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Resumen

Durante los dltimos anos el interés por los sistema de prediccion avan-
zada de trayectorias de vehiculos y de intenciones ha crecido notable-
mente. Inicialmente la prediccion tanto de trayectorias como de manio-
bras se ha centrado en observaciones realizadas desde puntos estaticos
tales como la infraestructura. Esto se ha debido a la falta de bases de
datos adecuadas para la predicciéon desde un punto de vista centrado
en el vehiculo.

Esta tesis aborda el problema de la prediccion de maniobras y
trayectorias en entornos de autopistas con un enfoque basado en apren-
dizaje maquina. Ante la ausencia de bases de datos apropiadas para su
desarrollo se tomd la decision de realizar una base de datos especifica
para la prediccion tanto de trayectorias como de maniobras. Asi nace
The PREVENTION dataset. Una base de datos grabada desde la per-
spectiva de un vehiculo que incluye cerca de 6 horas de grabaciones.
Cuenta con 2 camaras, un laser rotativo y 3 radares, ademas de un sis-
tema de localizacion diferencial y una unidad de medida inercial. Esta
base de datos incluye numerosas anotaciones manuales que permiten
identificar vehiculos y cambios de carril ademés de las posiciones de
los vehiculos.

El sistema de predicciéon de maniobras se basa en un arquitectura de
redes neuronales convolucionales que clasifica una imagen de entrada
en tres posibles categorias correspondientes con las acciones de cambio
de carril a la izquierda y a la derecha y la accién de continuar en el
carril actual. La imagen de entrada consta de tres canales en los que
cada uno cumple una funcién. El canal rojo representar el entorno,
la apariencia de la escena. El canal azul se emplea para seleccionar el
objetivo de la prediccion, del cual se dibuja el contorno actual y los
pasados con diferentes niveles de intensidad creando una especie de
estela que muestra la dinamica del vehiculo. El canal verde se emplea
para dibujar las estelas del resto de vehiculos que actiian como elemen-
tos condicionantes de la accién realizada por el vehiculo representado
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en el canal azul. Esta representaciéon no limita el numero de vehiculos
en la escena y el numero de muestras que se pueden representar es de
255.

Para poder comparar el rendimiento del sistema de prediccion de
intenciones con la capacidad humana de prediccion se ha realizado un
estudio que evalia la capacidad de predecir o detectar cambios de car-
ril, asi como la tasa de acierto de estos. Las métricas usadas para
comparar el desempeno tanto de las personas como del sistema de
predicciéon son la tasa de acierto y la anticipacion. f El sistema de
prediccion de trayectorias adapta una red neuronal convolucional de-
sarrollada para la clasificacion de células en imagenes clinicas. Esta
red extrae caracteristicas a diferentes niveles de profundidad para fi-
nalmente generar una imagen de salida. La red ha sido modificada
para tomar a la entrada una imagen 3D que codifica una secuencia de
imagenes de un solo canal. La salida es similar a la entrada solo que
codifica la misma secuencia en el futuro. Los vehiculos son represen-
tados sobre una vista de pajaro que genera una representacion gréfica
de la escena. Ademas, los elementos como las lineas dibujadas en la
carretera se pueden anadir en esta representacion. La red es capaz de
aprender la mecanica subyacente de las interacciones entre vehiculos y
el entorno para generar las posiciones de esos mismos vehiculos en el
futuro.

Para poder comparar los resultados obtenidos se ha implementado
un sistema de prediccién basico basado en un filtro de Kalman con un
modelo de velocidad constante como linea de partida. La prediccion
de trayectorias se ha evaluado utilizando varias métricas comunes en
la literatura, tales como el RMSE, MAE, ATE y el FTE.

Palabras clave: PREVENTION, Prediccion de Maniobras, Predic-
cioén de Trayectorias, Aprendizaje Maquina, Factores Humanos.



Abstract

During the last years, the interest in advanced vehicle trajectory and
intention prediction systems has grown remarkably. Initially, the pre-
diction of both trajectories and maneuvers has been focused on ob-
servations made from static points of view, such as the infrastructure
because of the lack of appropriate vehicle-centered datasets.

This thesis addresses the problem of predicting maneuvers and tra-
jectories in highway environments with a machine learning approach.
A specific database for the prediction of both trajectories and maneu-
vers was created because of the lack of appropriate ones. Thus, The
PREVENTION dataset was born. A database recorded from an on-
board perspective that includes almost 6 hours of recordings. It has 2
cameras, a rotating laser, and 3 radars, as well as a differential localiza-
tion system and an inertial measurement unit. This database includes
several manual annotations that allow the identification of vehicles and
lane changes as well as the positions of the vehicles.

The maneuver prediction system is based on a convolutional neural
network architecture that classifies an input image into three possi-
ble categories corresponding to left and right lane-change actions and
the lane-keeping action. The input image consists of three channels,
each one has a specific purpose. The red channel represents the en-
vironment, the appearance of the scene. The blue channel is used to
select the prediction target, from which the current and past contours
are drawn with different intensity levels creating a kind of trail that
shows the dynamics of the vehicle. The green channel is used to draw
the trails of all the surrounding vehicles that actuate as conditioning
elements for the vehicle represented in the blue channel. This repre-
sentation does not limit the number of vehicles in the scene and the
number of samples that can be represented is 255.

To compare the performance of the intention prediction system with
the human prediction capacity, a study was carried out to evaluate the
capacity to predict or detect lane changes, as well as the lane change
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accuracy rate. The metrics used to compare the performance of people
and the prediction system are the accuracy rate and the anticipation.
The trajectory prediction system adapts a convolutional neural net-
work developed for the classification of cells in clinical images. This
network extracts features at different depth levels to finally generate
an output image. The network has been modified to take a 3D in-
put image that encodes a single-channel image sequence. The output
is similar to the input, but it encodes the same sequence in the fu-
ture. The vehicles are represented on a bird’s eye view that generates
a graphic representation of the scene. Besides, elements such as road
markings can be added to this representation. The network learns
the underlying mechanics and interactions between vehicles and the
environment to generate the positions of those vehicles in the future.
A Kalman filter with a constant speed model has been implemented
as a baseline to compare with the obtained results. Trajectory predic-
tion has been evaluated using several common metrics in the literature,

such as RMSE, MAFE, ATE and FTE.

KeyWords: PREVENTION, Maneuver Prediction, Trajectory Pre-
diction, Machine Learning, Human Factors.
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Chapter 1

Introduction

1.1 Context Analysis

The transport sector brings many benefits to society and the econ-
omy. It is a critical sector in the economic and social development of
countries. The Furopean Commission estimates the transport sector
accounts for about 5% of Gross Domestic Product (GDP). The trans-
port sector accounts for 5,6% in the US, achieving a more than $1
trillion in GDP. However, the transport sector is also responsible for
many fatalities as well as massive emissions of Greenhouse gas (GHG).

Mobility demand is continuously growing; in 2018 it reached 4.7
trillion kilometers only in the US. This number is expected to grow up
to 5,6 trillion kilometers in 2050. Freight transport demand is expected
to grow by 52% from 397 billion in 2018 to 967 billion kilometers in
2050 as a result of economic development according to [1]. According
to the World Health Organization [2], with current levels of mobility,
approximately 1.35 million people died in 2018 as a result of road
traffic crashes. Developed countries with high-incomes own 40% of the
world’s vehicles, but only 7% of the world’s fatalities take place in these
countries.

In contrast, low-income countries own 1% of the world’s vehicles
and 13% of total deaths caused by traffic accidents. This data reveals
how access to technologies can help save lives. Road traffic crashes also
cause economic losses equivalent to 3% of the gross domestic product
on property damage. In the EU, the number of fatalities in highways
represents only 8%, but an accident on a highway usually ends with
disastrous consequences.

Worldwide GHG emissions by the transport sector represent 20%
of the world’s emissions. In the Euro area, this fraction rises to 29%

1
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Figure 1.1: EU CO; emissions by sector 1990 - 2014. * Transport includes inter-
national aviation but excludes international maritime. ** Other include fugitive
emissions from fuels, waste management and indirect CO; emissions.

according to [3]. The US Department of Energy’s Office of Energy Effi-
ciency and Renewable Energy estimates that light vehicles and medium
and heavy trucks and buses consume more than 80% of the energy
used by the transport sector. This consumption represents more than
20 quadrillions of British Thermal Unit (BTU) equivalent to 1,7 Gt
of CO5 only in the US. Transport emissions reached 1.1 Gt of CO, in
the EU in 2017. Figure 1.1 shows the evolution of greenhouse emis-
sions by sector in the EU zone relative to 1990 levels. All sectors
have experienced a significant reduction except for the transport sec-
tor. Transport sector emissions were growing until the global financial
collapse in 2008 when it fell to the 1999 level. The current level of
economic development is pushing the transport sector emissions up.

On the other hand, the climate crisis has set the focus on GHG. The
Paris agreement set an ambitious and global plan with the objective to
reduce GHG emissions and achieve average global warming below 2 °C
to the preindustrial level. The level of GHG must achieve a reduction
between 80% and 95% in 2050 in the EU area [4]. Figure. 1.2 shows
EU GHG emissions since 1990. The emissions have been decreasing
continuously since 1990. 2020 objective with 20% reduction is currently
accomplished but, 2030 target with 40% reduction seems challenging
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Figure 1.2: EU total CO, emissions 1990 - 2050.

with the current trend. An important effort reducing GHG emissions
needs to be made by all the involved parts; governments, industries,
services, and users.

The number of vehicles on the planet has reached 1.3 billion in
2016, according to [5]. These have doubled with respect to 2003 levels.
Economic development, especially in developing countries, has brought
vehicles to as many people as never before. This fact has produced a
dramatic increase in traffic jams in almost all cities around the world.
This problem cost $305 billion in the United States alone, where every
American lost 97 hours in traffic jams in 2018, according to [6]. The
cost of road congestion in Europe is estimated to be €110 billion a
year in 2012, according to |7].

The area of Intelligent Transportation Systems and Intelligent vehi-
cles has a vital role to play building tomorrow’s automotive paradigm
facing the problems stated before. Autonomous vehicles are close to
being a reality on the road in the next years. Autonomous vehicles have
the capacity and the obligation to address the problems created by the
transport sector. Autonomous vehicles can drive efficiently by remov-
ing any irrational motivation from the decision-making process, unlike
humans. They can sense precisely the environment and act accord-
ingly in a fraction of a second. They can drive continuously, needing
no stops to rest, are not affected by distractions, and eliminating fa-
tigue. Autonomous vehicles can communicate between themselves and
the infrastructure using Vehicle to Vehicle (V2V) or Vehicle to Infras-
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tructure (V2[) communications, being able to know the state of the
traffic at virtually everywhere, outperforming sensor ranges, and even
human perception.

The capacity of autonomous vehicles is determined by a convention
based on a reasoned agreement that logically describes the taxonomy
of the autonomous vehicle at five different levels. This SAE J3016TM
definition is not a specification and does not impose requirements, fig-
ure 1.3 shows a description of each automation level.

The reference case for automation is level 0, which is a non-
automated manual driven vehicle.

o Level 1 - Driver Assistance. Enables driver assistance on lat-
eral or longitudinal control using some environment information.
The human driver and the assistance system works together to
complete the driving action. Examples of level-1 automation are
lane-keeping or adaptive cruise control systems.

e Level 2 - Partial Automation. Characterized by assistance in both
longitudinal and lateral control. The human driver monitors the
environment and supervises the driving task. Examples of level-2
automation are lane-keeping and adaptive cruise control.

e Level 3 - Conditional Automation. The vehicle is driven in an
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automated way performing lateral and longitudinal control. The
human driver must be ready to take control as requested by the
system. Level-3 automation example is traffic jam chauffeur.

e Level 4 - High Automation. The system performs all the driving
functions under certain conditions. The possibility of removing
driving actuators characterizes this level. The driver may have
the option to control the vehicle if actuators do exist. Examples
of level-4 are driverless taxis in restricted areas.

e Level 5 - Full Automation. The automated driving system is ca-
pable of performing all the driving tasks under all conditions.
Human attention or intervention is not required.

Nowadays, commercial vehicles have reached automation level 3.
Manufacturers have developed different systems to perform automated
driving tasks. Tesla launched the autopilot system in October 2014,
offering semi-autonomous driving and parking capabilities, the cur-
rent version of autopilot has unexpectedly reduced its original capabil-
ities. Toyota launched the Safety Sense system as part of its strategy
to develop high-end safety systems in March 2015. Nissan’s models
equip the ProPilot system, which develops lane-keeping and Adaptive
Cruise Control (ACC) with hands-on-wheel. Hands-off functions are
only available in Japan since May of 2019. In February 2017, Volvo
introduced hands-off ACC and lane-keeping functions in some of their
high-end models under the label PilotAssist. VW group enabled the
Traffic Jam Assist system in July 2017. This system performs ACC
and lane-keeping under 55 kph with hands-off-wheel. Mercedes’ au-
tonomous assistance pack is denominated Driving Assistance Plus and
performs hands-off lane-keeping and ACC at no speed limits.

Autonomous vehicles will share the road with human-driven vehicles
for a long period of time. During this period autonomous vehicles
will take advantage of V2V communications sharing their information
and trajectories between them. However, human-driven cars with no
predefined trajectories will be a source of uncertainty.
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1.2 Motivation

Automated vehicles became a reality in the '80s with two research
projects: the EUREKA project and the Autonomous Land driven Ve-
hicle project. Both bring automated cars that can drive at limited
speed, using a sort of sensors in restricted areas. At that point, inter-
actions with non-automated vehicles did not represent a real challenge.
Nowadays, commercial vehicles have reached automation level 3 and
have become part of our lives. They will replace human-driven vehicles
in a distant future, but both will coexist for a long period.

In the meanwhile, automated vehicles will share the road with man-
ually driven cars. In this scenario, different behaviors and interaction
will take place between automated and non-automated vehicles. Auto-
mated vehicles could share their trajectories between them and actu-
ate in a coordinated manner. However, non-automated vehicles cannot
share their trajectories or intentions because they are self-generated at
the moment the driver reveals them.

In this scenario, automated vehicles need to deal with uncertainties
relative to manually driven vehicles while planning their trajectories.
Prediction becomes a pivotal ability to understand what other traffic
agents will do even if they do not communicate their intentions. Hu-
mans also make predictions and incorporate them into their decision
making. Human drivers are affected by some limitations such as dis-
tractions, reaction time, and tiredness, or fatigue. However, humans
still are the best driving machines.

Graphics Processing Unit (GPU) computation has reached levels
that enable complex image processing in real-time. The possibility
to understand images, even video sequences faster and better than
humans, brings the opportunity to predict the evolution of traffic scenes
overcoming human reasoning. Automated vehicles can take advantage
of their prediction capabilities by anticipating conditioning situations.
Driving performance can be enhanced in terms of efficiency and safety,
resulting in smoother traffic low and fewer blocking situations. For
this reason, a novel trajectory and maneuver prediction system based
on image sequences and sensor data is presented. This new ability
brings higher standards of safety and efficiency to automated vehicles.

1.3 Applications

The proposed models can be applied to predict trajectories and ac-
tions on highway scenarios. The scope of these models is not only
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autonomous vehicles but also human-driven vehicles.

Autonomous vehicles can improve their trajectories by using pre-
dictive motion or action models. Moreover, automated vehicles below
automation level 4 must be in contact with the driver all the time.
Providing the proper information to the driver is of utmost importance
to reduce the driver’s stress. Representation of future actions or tra-
jectories of surrounding vehicles would help the driver to understand
ego-vehicle behavior.

Non-automated vehicles can take advantage of these models using
them as an input of their Advanced Driver Assistance System (ADAS),
such as collision warning, collision avoidance, or ACC.

In both cases, these models help to improve safety and driving ef-
ficiency through higher fuel efficiency and higher traffic flow. This
contribution helps to reduce the three main problems generated by the
transport sector: traffic congestion, GHG, and injuries or fatalities.

1.4 Document Outline

After the introduction in Chapter 1, Chapter 2 reviews in depth the
most relevant works and datasets that address the trajectory or ma-
neuver prediction problem.

Chapter 3 presents The PREVENTION Dataset, a dataset explic-
itly built to develop the work presented in this Ph.D. dissertation and
fulfill identified shortages in this research area. Sensor setup, calibra-
tion, and synchronization mechanisms are detailed in this chapter, as
well as the generated metadata information.

Chapter 4 presents a social study conducted to evaluate human
capacity to anticipate lane changes in sequences extracted from The
PREVENTION Dataset. This study sets a baseline based on human
capabilities.

Chapter 5 describes the two learning-based predictive models devel-
oped. One focuses on lane change prediction based on vehicle motion
and prediction target integration in an RGB image. The other one
focuses on surrounding vehicles’ trajectory prediction by integrating
vehicle detection and road information as image sequences in a Bird
Eye View (BEV) representation.

The results of the proposed algorithm are presented and discussed
in Chapter 6. Finally, Chapter 7 contains the conclusions, main con-
tributions and future research lines.






Chapter 2

State of the Art

In this chapter, the state of the art is reviewed in detail. This includes
a review of the vehicle trajectory and maneuver prediction works as
well as the available datasets employed to develop these works.

In the first section, the available datasets are reviewed analyzing
three aspects: the acquisition point of view, sensor setup, and avail-
ability of data. An important distinction must be done regarding the
location of the sensors, which can be on board a vehicle or from an
extrinsic point of view. The first type has the disadvantage of be-
ing affected by occlusions. However, the results achieved when using
these datasets do not change at deploy time. The second type is very
valuable for understanding and evaluating the motion and behavior of
vehicles and drivers under different traffic scenarios. However, they
cannot be fully applied to onboard applications.

The second section reviews vehicle trajectory and vehicle intention
prediction work with a special emphasis on the prediction target. The
prediction target could be the ego vehicle or surrounding vehicles.
Datasets that provide measure from an exterior point of view, such
as infrastructure acquisition systems or drones have special considera-
tion. The ego vehicle does not exist, consequently there is not a clear
distinction between ego vehicle and surrounding vehicles’ predictions.
The main difference is that the data is not affected by occlusions as it
is when recording with onboard sensors. They cannot be considered
strictly ego vehicle centered because data are not recorded from this
point of view, but according to the availability of surrounding vehicle
information. This could be the most similar definition.

9
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2.1 Datasets

This section reviews the available datasets on which most of the vehicle
trajectory research or action-based predictions are based. Some of
them are publicly available but others were developed for a specific
purpose and the authors did not consider publishing them openly to
the scientific community.

e NGSIM I80 dataset [8]
The NGSIM program was launched by the U.S. Federal Highway
Administration in 2005 to provide a knowledge base for developing
micro and macroscopic driving models for traffic flow optimiza-
tion.

The researchers collected detailed data on the vehicle’s trajecto-
ries along I-80 in the San Francisco Bay Area. The study area was
approximately 500 meters long and consisted of a six-lane high-
way, including a high occupancy lane and an entrance lane. Seven
synchronized cameras, mounted on top of an adjacent building,
recorded vehicles passing through the area. The vehicle routes in
the images are converted into coordinates in the road reference
system, providing accurate positioning of the lane level and loca-
tions relative to other vehicles with a sampling rate of 10 Hz. This
dataset has a total duration of 45 minutes, divided into three 15-
minute parts. These periods represent the build-up of congestion
and total congestion during the peak period.

In addition to vehicle trajectory data, the I-80 dataset also con-
tains computer-aided design and GIS files, aerial orthorectified
photos, highway loop detector data in and around the study
area, raw and processed video, signal synchronization settings
on adjacent arterial roads, traffic signal information and loca-
tions, weather data, and aggregate data analysis reports. The
full I-80 dataset is freely available at the NGSIM Web site at
http://ops.thwa.dot.gov /trafficanalysistools /ngsim.htm

e NGSIM HW101 dataset [9].
The NGSIM HW101 is the second part of the NGSIM program.
Following the same goal, on June 15, 2005, researchers collected
detailed vehicle trajectory data on US 101, also known as the
Hollywood Freeway, in Los Angeles, CA.

The study area was approximately 640 meters long and consisted
of a five-lane highway. An entry/exit lane was also present in
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the experiment area. Eight synchronized digital video cameras,
mounted from the top of the 36-story building next to the highway
(as shown in figure 2.1), recorded vehicles passing through the
study area. The trajectories of the vehicles in the images are
transformed into lane-level trajectories with precise positioning
and relative location to the vehicles. The dataset is built with
three 15-minute parts from 7:50 a.m. to 8:35 a.m. The available
data is the same as the NGSIM I80 dataset.

e KITTI dataset [10], [11]

The KITTI benchmark suite has provided different types of
datasets for many research purposes. The object tracking bench-
mark can be used for trajectory prediction. There are eight differ-
ent classes labeled, but only cars and pedestrians are used for this
benchmark. A total of 50 sequences compose the whole dataset,
which has 21 training sequences and 29 test sequences. For each
sequence, 2D and 3D bounding boxes of pedestrians and vehicles
are labeled in the image plane and in the point cloud. The goal of
this dataset is to solve the tracking problem between frames, but
the ground truth can be used to predict vehicles or pedestrians’
trajectories.
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e Oxford RobotCar dataset [12]

The Oxford RobotCar dataset contains over 100 repetitions of a
consistent route through Oxford city over a period of a year. The
dataset captures many different combinations of weather, traffic
status, vehicles, and pedestrians along the time with long-term
changes such as construction and roadworks. The recording plat-
form is a vehicle equipped with six cameras, Light Detection and
Ranging (LiDAR), GPS, and Inertial Navigation System (INS).
The primary purpose of this dataset is the development of long-
term localization algorithms. This dataset provided a vast amount
of data that could be used for trajectory prediction in urban sce-
narios. However, there is no information beyond the raw data.

e PKU dataset [13]
The dataset published by the University of Peking contains data
recorded on Beijing’s fourth ring road for 97 minutes and over
69 km. The mobile platform has a GPS-IMU system for global
location tasks and four HOKUYO LiDAR sensors (two long and
two short-range) to measure the position of the surrounding ve-
hicles and the road boundaries. The LiDAR range is 40 and 20
meters for the long and short-range, respectively. Positioning and
environment measuring have different data rates, the ego vehicle
location has a frequency close to 20 Hz, and the data coming from
the LiDAR is approximately 10 Hz. The data set presents four
types of records. The ego-motion log contains orientation (roll,
pitch, and yaw), global positioning (north and east), and speed
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(north and east). Surrounding vehicle detections include posi-
tion (x and y in local and global), speed (x and y in local and
global), and dimensions (width and length). Road boundaries are
recorded as 2D points (x and y) defining the limits of the road in
local and global reference systems. Also, the ego lane changes are
recorded, including the type (left or right), the start and end time
of the maneuver, and the initial condition of the ego vehicle in the
maneuver (X, y, and heading). There is no lane level information
in this dataset.

e LISA-A dataset [14]

The LISA-A dataset is a dataset with more than 100 hours of
real-world recordings including a mobilEye sensor, eight cameras,
six LiDARs, five radars, and GPS/acIMU sensors. The mobilEye
sensor provides parameters of the lane structure. The raw data is
available for all of the sensors. The metadata extracted from the
raw measures consists of labels that identify each vehicle in each
camera with a bounding box. No information about maneuvers or
road positioning of vehicles is available. The actual downloadable
file of the dataset includes only four sequences 100 seconds length
approximately. The biggest part of the 100 hours dataset is not
publicly available at present.

e ApolloScape dataset [15]
The ApolloScape dataset was released in 2018, and it has been
adding content since its release. The ApolloScape includes some
datasets for different research topics. One of them is oriented to
trajectory prediction problems.
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Figure 2.5: Scenes example of Apollo Trajectory Prediction dataset.

This dataset contains trajectories manually labeled using cam-
era and LiDAR sensors. The data was collected in the city of
Beijing in urban-scenarios mostly. They offer a sample of ap-
proximately 100 minutes of data with highly complicated traffic
scenarios mixing vehicles, riders, and pedestrians. The frame rate
of the provided annotations is at 2 Hz, which is insufficient to de-
pict precisely the motion of vehicles in nonlinear trajectories such
as lane changes or turn maneuvers.

The trajectory files are represented as 1-minute sequences, which
include annotations for each frame with a unique id for each ve-
hicle, object type, position, size, and orientation. This dataset is
focused on trajectory prediction only, and action-oriented predic-
tions such as lane changes cannot be applied due to the lack of
road or lane structure information.

Berkeley DeepDrive BDD100K [16]

Berkeley DeepDrive is a video-based dataset with more than
100,000 sequences of videos recorded in many different hours,
weather conditions, and traffic scenarios. This dataset was
recorded for more than 50,000 drivers, making it useful to de-
velop models with a variety of ego-vehicle behaviors. The images
are 720p at 30 Hz complemented with Global Positioning Sys-
tem (GPS) location and Inertial Measurement Unit (IMU) data.
This dataset provides high-level information such as lane mark-
ings, drivable area, and object detections on 100,000 images, one
for each sequence. Additionally, instance segmentation is pro-
vided for a tenth of them. As far as only one image is labeled
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Figure 2.6: DeepDrive dataset features representation.

in each sequence, this dataset cannot be used for time-based al-
gorithms until they provide fully labeled sequences. However, it
has a huge potential to develop vision-based algorithms due to
the vast amount of data.

e Honda Driving Dataset (HDD) [17]

The HDD is a challenging dataset to enable research on learn-
ing driver behavior in real-life environments. Three cameras
and one LiDAR are employed to sense the environment generat-
ing all-around 3D information and a visual representation of the
middle front of the vehicle. A GPS with Real Time Kinematic
(RTK) capability and an IMU complete the sensor setup. More
than 100 hours of data were recorded in the San Francisco Bay
area. The dataset is oriented to develop action-based predictions.
Events are labeled in four different dimensions, goal-oriented ac-
tion, stimulus-driven action, cause, and attention. However, the
scope of these annotations is limited to the ego vehicle.

The Honda 3D Dataset (H3D) [18] is an extension from the HDD
with 3D tracking information, more than 1 million of 3D bounding
boxes are labeled in 160 scenes representing more than 27,000
frames with pedestrians and interactive traffic. The labels are
annotated at a rate of 2 Hz and linearly propagated to generate
10 Hz labels. This data rate is not enough to develop trajectory or
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maneuver prediction algorithms as it happens with ApolloScape
dataset.

e HighD dataset [19]

The highD data set is a new set of naturalistic vehicle trajec-
tory data registered on German highways. Using a drone, the
typical limitations of established traffic data collection methods,
such as occlusions, are overcome by aerial perspective. Traffic was
recorded in six different locations and includes more than 110500
vehicles. The trajectory of each vehicle, including its type, size,
and maneuvers, is automatically extracted. Using state of the art
computer vision algorithms, the positioning error is typically less
than ten centimeters. Although the data set was created for the
safety validation of highly automated vehicles, it is also suitable
for many other tasks such as traffic pattern analysis or parame-
terization of driver models.

The data available in the HighD dataset are positions of 110500
equivalent to 44500 kilometers traveled with a standard error
below 10 centimeters and maneuvers conducted, such as lane
changes. Positions, speed, and statistics such as time headway
and Time to Collision (TTC) are also provided.

e Argoverse dataset [20]
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Figure 2.9: Example of Argoverse motion forecasting dataset.

The Argoverse dataset is a dataset recorded in the cities of Mi-
ami and Pittsburgh. High-definition digital maps of the involved
area are available providing precise lane level information, driv-
able area, and ground height. The sequences were recorded with
a vehicle equipped with 2 LiDARs, GPS, a 7 cameras rig with
360 degrees coverage running at 30 Hz, and a stereo camera sys-
tem running at 5 Hz. Labels of 3D detections are provided for
113 sequences with more than 10,000 tracked objects. This data
is oriented to develop tracking algorithms but can be also used
to develop trajectory and maneuver predictions. The Argoverser
motion forecasting is a collection of more than 320,000 sequences
each 5 seconds long. Each sequence consists of a 2D bird-eye view
position of each tracked object sampled at 10 Hz. The sequences
represent lane changes, pass through intersection and vehicles tak-
ing left and right turns.

e Waymo dataset [21]

The dataset contains independently-generated labels from LiDAR
and camera data. LiDAR 3D bounding boxes are provided for ve-
hicles, pedestrians, cyclists, and traffic sings. The detections are
represented as 7-DOF bounding boxes in the vehicle’s reference
frame. Each detection has a unique ID identifier. The same ob-
jects are also labeled in the camera images providing 2D bounding
boxes with a unique ID without correspondence with LiDAR IDs.
This dataset provides 1000 segments, each one with 20 seconds
of driving with 3D bounding boxes labels. Camera 2D bounding
box labels are only provided for 100 of those segments.
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Figure 2.10: Waymo dataset example.

The datasets presented in this section are summarized in table 2.1.
Regarding the perspective from which the data was recorded, two types
can be distinguished basically: in-vehicle and third point of view such
as infrastructure or drones. Fgo and Top labels denote the in-vehicle
and third point of view, respectively. The sensor setup is marked using
a tick mark (v') or an asterisk symbol (x). The tick mark represents
that the sensor data is available. The asterisk symbol shows that
the sensor data is not available but has been used to compute some
information.

Static recording systems from a top view perspective have many ad-
vantages over in-vehicle recording systems. They are unaffected by oc-
clusions and provide a complete understanding of the scene. Drivers do
not know they are being recorded, and their behavior is not altered. A
static recording system captures more vehicles than mobile platforms,
but the vehicles travel a shorter distance and are visible for a shorter
period. The most challenging problem when an algorithm is developed
using this type of dataset is implementing it on in-vehicle applications.
Datasets recorded from onboard sensor have the advantage of being
directly deployed, and there is not a gap between development and
deployment. On the contrary, the data are affected by occlusions, and
there is a level of uncertainty that is not present in datasets recorded
from heights.

If we take a look at the sensors used to build these datasets and
consequently used in the autonomous vehicles that will develop au-
tonomous tasks, we can find three types: camera, LiDAR, and radar.
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The most common are cameras, followed by LiDARs, and lastly, radars.
However, radars are the most common sensor in nowadays vehicles.
NGSIM and Berkeley Deep Driver datasets are only based on image
systems. Others, such as Honda 3D and PKU are based on LiDAR.
Most of them use a combination of camera-based system and LiDAR
solutions. However, only the LISA-A dataset provides radar detec-
tions, which are one of the best choices between expensive LiDARs
or complex stereo camera systems for object detection, in spite of its
robustness. Nowadays, brand new cars are commonly equipped with
radar sensors as an essential element for proactive security systems
such as Automatic Emergency Braking (AEB) or Collision Avoidance
System (CAS). Also, low-autonomy tasks such as speed planning are in
charge of radars in the ACC systems. Datasets recorded from a mobile
platform are usually equipped with a GPS system for global positioning
tasks, and they are often complemented with an IMU. On the opposite
side, the HighD and the NGSIM datasets are both recorded from an
external and static point of view. Their measurements are referred to
a static road reference system, and it does not need global positioning.

Datasets are built to fulfill a shortage in a specific field or research
topic. For some fields or research topics, a massive amount of raw
sensor data is enough, but the most valuable part of a dataset is the
metadata or annotations generated by experts to label a specific cir-
cumstance. The metadata of each dataset has been carefully reviewed
to establish the useful information they provide to develop predictive
trajectory and action works. The Oxford RobotCar only provides raw
sensor data because its primary purpose is the long-term vision and
LiDAR-based localization. Berkeley Deep Drive is based only on a
monocular camera system that is not able to generate range measure-
ments; for this reason, trajectories cannot be generated. All the other
datasets provide trajectories in a cartesian-metric reference system.
Some such as KITTI, H3D, ApolloScape, and LISA-A provide trajec-
tories in the ego-vehicle reference system, others such as NGSIM or
HighD provide trajectories in the road reference system due to their
specific point of view. The Argoverse dataset provides trajectories in
a semi-global map-based reference system with an arbitrary origin of
coordinates. Finally, the PKU dataset provides trajectories in both
local and global reference system.

Lane level information is necessary for a precise scene understanding
in urban and highway scenarios. Lanes establish dependencies between
vehicles, especially in highway scenarios, by creating virtual walls that
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can be crossed or not, depending on the situation. Lane level infor-
mation endows driving relationships between vehicles establishing roles
such as lane following, overtaking, or cut-in and cut-out. The lane-level
information allows for an easier understanding of vehicle trajectories
by simplifying curved trajectories to straight ones in the lane reference
system. KITTI, PKU, ApolloScape, H3D, and Waymo datasets do
not provide lane-level information. NGSIM and HighD datasets nei-
ther provide lane-level information, but they were recorded in straight
stretches of highways, and the trajectories are intrinsically referred to
the lane reference system. Argoverse dataset does not provide lane
detections but provides a detailed map of the recording area built with
the lane’s axes.

Only HDD and HighD datasets have event labels. HDD labeled the
events made by the ego vehicle and the cause of this event, i.e., a stop-
action caused by congestion. The events present in the HighD dataset
are the number of lane changes developed for each vehicle during the
time while crossing the recording area. More complex event annota-
tions such as maneuver classification are promised to be available soon.
Potentially, lane-change maneuvers can be easily computed if the lane
information and the trajectories are available. The lane change event
takes place when the center of the vehicle crosses the line between two
lanes. The beginning of the lane change is much more relevant than
the lane change event, and it is harder to define.

The most extended dataset is the Oxford RobotCar dataset with
more than 200 hours of recordings. However, there are no detections
nor annotations. The Argoverse motion forecasting dataset presents
more than 300,000 sequences 5 seconds length of surrounding vehicle
positions. However, 5 seconds of data are sometimes not long enough
for motion recognition and long-term predictions. Following this line,
Waymo dataset provides fewer samples but with a longer duration.
H3D, Berkeley Deep Drive, and Apolloscape present trajectories la-
beled at an insufficient frame rate, 2 Hz in the best case. LISA-A and
KITTI dataset has appropriate frame rates (10 Hz), but they have a
minimal amount of data. Finally, the PKU dataset has an appropriate
data rate and length but, lane-level information is not available. We
can highlight HighD between the top-view datasets for its length com-
pared with NGSIM datasets. These static datasets can be affected by
an underlying problem. The area covered by them varies from 420 to
640 meters. This area could be driven at highway speed in between 12
and 25 seconds, depending on the length and the road congestion.
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Dataset Release date Length Rate - 4 A O m A K
NGSIM 180 Dec 2006 3 seq @ 15 min 10 Hz Top Vv v v
NGSIM HW101 Jan 2007 3 seq @ 15 min 10 Hz Top Vv v v
KITTI June 2013 50 seq 10 Hz Ego v Vv RTK v
Oxford RobotCar Nov 2016 100 seq @2 h 33/10Hz | Ego vV GPS
PKU Jan 2017 97 min 10 Hz Ego * GPS v
LISA-A Sept 2017 4seq@100sec 30/10Hz | Ego v v v GPS v Vv
ApolloScape Mar 2018 100 min 2 Hz Ego v Vv GPS v
Berkeley DeepDrive May 2018 100K @ 1 frame 30Hz* | Ego V GPS v
H3D June 2018 160 seq 2Hz Ego v GPS v
HighD Oct 2018 16 h 25 Hz Top = vV
Argoverse Motion Forecasting ~ June 2019 320K seq @ 5 sec 10 Hz Ego * GPS v v
Waymo Aug 2019 1000 seq @ 20 sec 10 Hz Ego v Vv RTK v
PREVENTION# Oct 2019 11 seq @ 30 min 10 Hz Ego v v v RIK v v V

Table 2.1: Datasets Overview
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(%) represents the sensor data is not available but has been used to compute some information.
(1) represents features that are not provided but can be computed from existing data.
(A) PREVENTION dataset is part of the contributions of this thesis.

1c



22 State of the Art

2.2 Trajectory and Lane Change Prediction

In this section, state of the art related to trajectory and maneuver
prediction problems is reviewed in detail. There are several essential
points to take into account to understand the evolution and differences
between different algorithms and models. Table 2.2 shows the topology
analysis followed in this review attending to their most differential
advances.

Prediction problem Trajectory / Maneuver
Prediction target Ego vehicle /Surrounding vehicles
Sensors Camera / LiDAR / Radar
Variables Vehicle State Context
Position Road structure
Speed Lanes
Acceleration Lane marking
Heading Appearance
Yaw rate
Width
Length
Interaction Surrounding Vehicles
Free space
Time domain Past / Present / Future / Recurrent

Table 2.2: Key Variables of Analysis in Prediction Works

Prediction problems are clearly divided into two kinds of predic-
tions: trajectories reviewed in subsection 2.2.1 and maneuvers in sub-
section 2.2.2. However, sometimes trajectories are used as a basis to
predict maneuvers and vice versa, and they contribute in both fields.

Another distinction can be made attending to the prediction tar-
get. Some works addressed ego predictions problems such as [22], [23],
and [24]. These works are valid to develop simple models using ego
spatiotemporal variables only but also complex models with a huge
amount of information such as ego and surrounding trajectories and
precise context information. However, the prediction of ego trajecto-
ries or maneuvers is useless, and these models need to be extrapolated
to other traffic participants. The information used in these models is
usually extremely accurate, but the same information computed from
other vehicles is commonly poorer or simply unavailable. This kind
of problem happens when the quality and nature of measures changes
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from the development set to the deployment one. The same problem
arises when the non-onboard sensor’s information (i.e., infrastructure)
is used to develop models.

Sensors represent another differentiation point. Conventional sen-
sors such as cameras and LiDARs generates world representations that
need to be processed to extract information. Others, such as radars,
provide a kind of discrete representation of the world which can be used
directly. Visual or graphic information such as images and even point
clouds are commonly used to extract high and low-level information,
but they can also be used as raw inputs thanks to the development of
GPUs and Convolutional Neural Networks (CNNs).

The mainstream data used in vehicle prediction problems are ve-
hicle state variables such as position, speed, acceleration, orientation,
and yaw rate. These variables define the kinematic and dynamic state
of a vehicle, and they are useful to understand past, present, and fu-
ture self-evolution. The vehicle’s width and length, together with its
state, define the occupation of the road space. Contextual variables
are sometimes considered with the aim of focusing predictions. This
variable tries to represent in a numeric way the scene. As far as roads
are defined by human agreements to use them, they can be described
by parameters such as lane marking, the number of lanes, lane width,
lane curvature, type of lines, entries, and exits. Context can also be
represented as images that contain all previous context variables in a
non-numeric way.

Vehicles use to share the road with other traffic agents such as cars,
motorcycles, buses, and trucks. Ego actions, and consequently, ego
trajectories, are caused and affected by these other traffic participants.
The same mechanism takes place in the opposite direction, being the
ego vehicle a source of change for other vehicles. The road is an inter-
connected place where all agents are directly or indirectly affected by
the behavior of each other. This is a crucial point to develop vehicle
prediction algorithms. These interactions can be taken into consider-
ation by using free space representations or the surrounding vehicles’
state.

Time is an essential element for predictions. Predictions must be
based on past and /or present information and must describe an element
in the future such as positions or maneuvers. The kind of prediction
can be considered as a single-point prediction when a model generates
some information at a specific and fixed time in the future. Other
models can generate a few samples of prediction at different but fixed
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time horizons; this can be defined as multi-point predictions. A spe-
cial kind of prediction can be performed with recurrent models. They
can iteratively perform a single-point prediction being able to perform
virtually unlimited multi-point predictions.

2.2.1 Trajectory Prediction

Trajectory prediction problem addressed the forecasting of one or vari-
ous future positions of an analyzed vehicle or a group of them. Trajec-
tories denote a set of positions with a corresponding timestamp, but a
single predicted position combined with the current position can build
a trajectory. Positions are used to define a precise location, sometimes
in 2D or 3D reference systems, sometimes in local or global frameworks.
Independently of the reference system used, positions are described by
numbers. It is not odd to think that positions or trajectories predic-
tions are tackled from numeric approaches.

Almost all of the works analyzed are based on the use of variables
that describe the motion history of the vehicles ussing their state rep-
resentation in a numeric way [25], [26], [27], [22], [28], [29], [30], [31],
[32], [33], [34], [35], and [36]. Only one approach addressed the trajec-
tory prediction problem from a graphical perspective [37| generating
predictions directly over images.

The state of the art is reviewed following these three categories:
data used as input and how it is structured, type of generated data,
and databases used to develop the models.

2.2.1.1 Input Data

Input variables come from simple position sequences to complex road
representations. Attending to the nature of the data, it can be classified
into three main groups.

e Kinematic and dynamic variables. Variables such as position,
speed, acceleration, heading, and yaw rate define the state vec-
tor in a detailed manner. Early works made use of this vehicle
representation (total or partially) considering only the prediction
target by itself [25], [26], [22]. These approaches learn simple
physical-based motion models that cannot anticipate any maneu-
ver until it has been explicitly observed in the input sequence.
Usually Kalman Filter (KF), Gaussian Mizture Models (GMM),
Artificial Neural Network (ANN), and Recurrent Neural Network
(RNN) are commonly used in these approaches.
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e Contextual variables. Next-level features, such as lateral and lon-
gitudinal positions, lateral speed and acceleration, or heading er-
ror represents the combination of the vehicle state and the lane
parameters. This transformation includes lane information indi-
rectly, which allows models to learn road-based vehicle trajecto-
ries |30], [32]. Lane-keeping trajectories are denoted by a centered
position on the lane; however, lane change trajectories will aban-
don the central part of the lane and generally end up in the central
area of the adjacent lane.

e Interaction variables. Vehicles interactions are even more condi-
tioning than lane or road configurations, but its integration can
be considered in many different ways. The main problem adding
interactions is that the number of involved vehicles varies.

A simple method to include interactions was addressed in [32]
where the TTC is appended to the vehicle state input. TTC
represents in a single number if one vehicle is approaching others
and raises the necessity of a lane change or a speed reduction.
However, the decision to change to the left or right lane depends
on many factors, such as the availability of the adjacent lanes or
social agreements (i.e., overtaking is only allowed by one of the
lanes).

A fixed spatial configuration is proposed in [31]| to incorporate
all the existing vehicles into the algorithm. Ther road space is
divided into small and equal areas to define a lattice where the
state vector (position and speed) of each possible existing vehicle
is incorporated together with the ego vehicle state vector. This
approach is limited in the number of vehicles, but divisions are
small enough to represent all the possible vehicles. However, this
approach aims to model how surrounding vehicles’ trajectories are
affected by the ego vehicle but do not model interaction between
surrounding vehicles.

In [33] the same approach is followed, dividing the road area into
smaller rectangular divisions. The state vector of each vehicle is
represented in each corresponding division. The difference arises
with the use of a so-called Convolutional Social Pooling block.
This block learns spatial interdependencies of the existing motion
histories and tries to assess how the surrounding vehicle config-
uration affects the prediction target. In contrast with [31], this
approach is centered on the prediction target. However, it can be
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applied to any other traffic participants, but the availability or the
quality of the measures will change. In [36] a simple vehicle-centric
structure is proposed to integrate adjacent vehicle interactions at
six tentative positions around the centered prediction target.

Other proposals |28], and [29] store road configuration examples
generating a knowledge database using trajectory stretches and /or
the road occupancy configuration. This approach does not need
a fixed representation structure as information can be stored in-
dependently of the number of vehicles present in the scene.

Vehicles’ state, road configuration, interactions, and context infor-
mation are clustered under appearance in images. In [37], video se-
quences are used to generate future vehicle locations at the image ref-
erence system by means of Generative Adversarial Network (GAN).
This approach avoids dealing with the problem to codify or model
context or interactions; on the other hand, predictions are limited to
the image domain.

2.2.1.2 Output Data

Prediction models are clearly conditioned by road structure and the
vehicle configuration. Based on this, different kinds of trajectories can
be predicted, attending to the nature of the used algorithms.

Attending to the number of trajectories predicted them could be
classified into two categories:

e The first category is the single-vehicle trajectory prediction, where
the prediction is focused only on one vehicle and surrounding vehi-
cles act as conditioning factors. These approaches need to repeat
the prediction process for each existing vehicle; however, this is
the common approach.

e The second category is multi-vehicle trajectory predictions, where
all considered vehicles are predicted at the same time. This prob-
lem approach was developed in [34].

Attending to the type of trajectories generated they can be classified
into two categories:

e Discriminative models. These models generate fixed trajectories.
These kinds of trajectories are the most common, and they are
generated usually by ANN, KF, RNN, and CNN models.
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e Generative models. This kind of model learns probability distri-
bution functions from data. Predicted trajectories are generated
according to these probability distribution functions. The benefit
of these kinds of models is that uncertainty is intrinsically mod-
eled. In [34] and [37] this kind of trajectories are generated by
means of Conditional Variational Autoencoder (CVAE) and GAN
respectively.

2.2.1.3 Datasets

The databases used to develop the reviewed works are limited to some
private custom datasets and two public datasets. Some works such
as [25], [22], |31] use their own datasets which are not publiciy available.
In these cases all this datasets were recorded from onboard sensors.
The main public dataset used for trajectory predictions is the NGSIM
dataset, it has been used in a wide of works [27|, [30], [32], [33], [34],
and [36]. A small minority [28] and [29] made use of the PKU dataset.
As it can be observed the development of prediction trajectory systems
uses massively the NGSIM dataset. This dataset offers precise and
non occluded data from an infraestructure point of view in a highway
straight stretch.

Finally, table 2.3 presents in a simple view a comparison between
the reviewed works. Note that references to ego are related to works
that addressed the ego trajectory prediction problem. In the case of
works based on non-onboard sensors (NGSIM), the label single is used
to denote single trajectories that could be considered equivalent to ego
trajectories. Reference to center are relative to a vehicle considering
all their surrounding vehicles, which are abbreviated with notation
surr. The prediction type is denoted with the letters D and G for
discriminative and generative models, respectively.



Work Input Prediction
Authors Year Dataset Kinematics  Context Interaction Model Type Target
Hermes et al. [25] 2009 Own Ego - - ANN-RBF D Ego
Ammoun et al. [26] 2009 Own Ego - - KF D Ego
Ranjeet et al. [27] 2010 NGSIM Single v - NN D  Center
Wiest et al. [22] 2012 Own Ego - - GMM G Ego
Houenou et al. [28] 2013 PKU Ego - All surr. CYRA D Ego
Yao et al. [29] 2013 PKU Ego - All surr. Database D Ego
Yoon et al. [30] 2016 NGSIM Single - - ANN D Center
Altché et al. [32] 2017 NGSIM Single v TTC LSTM D Single
Kim et al. [31] 2017 Own Ego + surr v 36X21 Grid LSTM D Surr
Deo et al. [33] 2018 NGSIM Center + surr v 3X13 Grid | LSTM + CSP G Center
Hu et al. [34] 2018 NGSIM Center + Surr v SIMP CVAE G All
Benterki et al. [36] 2018 NGSIM Center v 3X2 Grid LSTM-GRU D Center
Roy et al. [37] 2019 | VISDRONE Single v Appearance GAN G Single

Table 2.3: Trajectory Prediction State Of the Art Summary
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2.2.2 Lane Change Prediction

The definition of vehicle trajectory prediction is precise, to know where
the vehicle will be some time into the future; there are no discrepancies
about that. However, the lane change prediction can be understood in
two ways. The literature refers to a lane change prediction as to the
detection of a lane-change maneuver before the center of the vehicle
crosses the lane markings. However, the lane change is a maneuver
developed over time with a lane crossing event approximately in the
middle. A prediction strictly means to state something before it hap-
pens. According to this definition, a lane-change maneuver is only
predicted if it is stated before it has started. Some works intend to
predict lane changes before they have started by labeling a few sam-
ples before its beginning. However, the results of these works do not
evaluate the performance in terms of predictions. We will adopt the
literature definition in this document, assuming a prediction as a de-
tection before the lane change event.

Lane change or maneuver prediction problem is very similar to the
trajectory prediction problem. The differences are only differences in
the output of the problem. While trajectories are mainly numerical
problems; maneuver predictions are treated as a classification prob-
lem. The basis of both problems are correlated, and it is common
to find works that addressed the trajectory prediction problem with a
previous maneuver prediction and vice versa. Future trajectories can
be better predicted if the maneuver is known in advance, as well as
maneuvers can be better predicted if the trajectories are known. Mo-
tion representations are the ground of predictions, either trajectories
or actions. They can be complemented with context information, wich
is mandatory since maneuvers are related to road structure, especially
in highway scenarios. Interactions between vehicles are also a determi-
nant factor for the analysis of vehicle maneuvers. A study conducted
to analyze the most relevant features to predict lane changes [38] con-
cludes that the lateral offset and the lateral speed w.r.t the lane axis
together with the relative speed to the preceding vehicle are the three
most relevant features. These three variables are a combination of
kinematic variables (position and speed), context (lane structure), and
interaction (relative speeds).

Similarly, we will follow a review of the state of the art analyzing
input variables, type of generated outputs, and the dataset used to
develop these models.
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2.2.2.1 Input Data

The input variables represent the information used to classify or predict
actions or maneuvers of analyzed vehicles. These can be classified into
three main groups attending to its nature:

e Kinematic and dynamic variables. Most of the works that ad-
dresed the lane change or maneuver prediction problem do it by
using kinematic and dynamic vehicle state variables [39], [40], [41],
[38], [42], [43], [44], [45], [46], [47], [33], [48], [49], [50], [51]. There
are only two exceptions that are not directly based on this vehi-
cle state representation. In [52| the parameters of the vehicle’s
bounding box are used to classify the action developed by the ve-
hicle. These parameters can represent somehow the vehicle state.

e Context information. Context represents road structure, and ac-
tions or maneuvers are road-based actions. Lane changes are
specifically related to the change from one lane to another, so
lane level information is mandatory at least to be able to gener-
ate action labels and highly recommendable as input. The most
common way to include context information is by using kine-
matic and dynamic vehicle variables at the lane reference sys-
tem [30], [44], [48], and [50], or include variables such as the dis-
tance to the lane markings [38|.

e Interaction variables. Interactions arise the need for maneuvers.
They can be incorporated in many different ways, from simple
ones such as relative speeds [38], to complex scene representa-
tions. The most used representation model is by using a fixed
vehicle configuration which commonly is a 3x2 grid representing
the front and rear vehicles on the prediction target lane and the
two adjacent lanes [51], [50], [49], and [33], and a small variation
of 3x3 grid such as in [39], and [42]. Special consideration is made
in [39] where a 3-agent model is proposed, including ego vehicle,
prediction target on an adjacent lane, and the preceding vehicle
of the prediction target. This specific configuration is a simpli-
fication of the 3x2 or 3x3 configuration for cut-in lane-change
maneuvers. Each element of the grid is filled using different vari-
ables, usually relative positions and speeds. These representations
are vehicle-centric approaches. However, in [53], vehicle positions
are used to generate an occupancy map over a road scheme rep-
resentation. This approach is road-centric, and the number of
interacting vehicles is not limited nor their spatial distribution.
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2.2.22 Output Data

Prediction algorithms can differ in their output in three different ways.
One difference is the number of predicted actions. None of the works
addressed this problem from a multi-target prediction problem. All
the models are focused on a single vehicle to perform predictions. This
prediction can be extended to all the traffic participants by repeating
the prediction process taking each vehicle as the prediction target.

Attending to the type of predictions, this can be generative or dis-
criminative.

e Discriminative models. These models produce maneuver proba-
bilities evaluating how the input data is similar to each proposed
maneuver. This type of output is generated by Case-Base Rea-
soning (CBR), Radio Frequency (RF), Support Vector Machine
(SVM), ANN, or CNN models.

e Generative models. These models produce maneuver probabil-
ities evaluating how the input data looks like data generated
from each type of maneuver. This type of output is generated
by Bayesian Network (BN), Dynamic Bayesian Network (DBN),
GMM, Gaussian Process Neural Network (GPNN), and Long
Short-Term Memory (LSTM) encoder-decoder models.

Attending to the prediction time horizon, predictions can be classi-
fied into two categories:

e Detections. Detections refer to the classification problem. A lane-
change maneuver is a time-consuming action that concludes when
the vehicle arrives at its destination lane. The lane change event
is considered as the point when the center of the vehicle crosses
the divisor line between the lanes. Classifying the lane change’s
ongoing action before the lane change event takes place is also
considered a prediction. Most of the works addressed the lane
change prediction problem from this perspective.

e Predictions. Prediction term refers to point out the lane change
some time in advance with respect to the starting point of the lane-
change maneuver. Some works such as [42], [44], [49], and [50] con-
sider the lane change prediction problem in this manner. However,
their results are provided in terms of classification accuracy in-
stead of lane change anticipation. Since the complete lane change
is labeled as a positive detection, the system’s actual performance
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to predict lane changes in terms of anticipation is masked. A
deeper analysis of the results would reveal if these models can
predict lane changes before they started.

Attending to the predicted maneuvers them can be classified into
two categories:

e Lateral maneuvers. Two choices are possible in direction; left
or right lane changes. However, the lack of left and right lane
changes represents the third state, which means a lane-keeping
status. More complex actions such as cut-in, cut-out, merge,
incorporation, or exit are particular cases of left and right lane
changes that involve the road configuration and the viewpoint.

e Longitudinal maneuvers. These are defined in [33| as a combina-
tion with the lateral maneuvers. The stop maneuver represents a
reduction from its original speed. This kind of longitudinal classi-
fication is oriented to generate previous knowledge of multimodal
trajectory prediction systems.

2.2.2.3 Datasets

The datasets used for the maneuver or lane change prediction problem
are wider in variety concerning the trajectory prediction case. The
use of public datasets is limited to two of them. Some works such
as [30], [33], [48], [50] use of the NGSIM, one more time, this dataset
has demonstrated to be a reliable source of data for vehicle prediction
algorithms. The second public dataset used was the PKU dataset, and
the works based on it [46] and [47] are based on the public and private
part of this dataset. Most of the works [39], [40], [41], [38], [42], [44],
[53], [49], and [51] are based on private onboard datasets. This effort
to create datasets to address the lane change prediction problem from
onboard perspective reveals the interest from the automotive industry.
Finally, table 2.4 presents a comparison between the reviewed works.
Note that references to ego are related to works that addressed the ego
lane change prediction problem. The label single denotes an isolated
vehicle analysis for works based on NGSIM. Reference to center are
relative to a vehicle considering all their surrounding vehicles, which
are abbreviated with notation surr. The prediction type is denoted
with the letters D and G for discriminative and generative models. P
label differentiates predictive works from purely classification ones.



Work Input Prediction
Authors Year | Dataset | Kinematics Context Interaction Model Type Target
Kasper et al. [39] 2012 Own Ego + surr v 3x3 Grid BN G Surr
Graf et al. [40] 2013 Own Ego + 2 veh v 3 Veh model CBR D Surr
Kumar et al. [41] 2013 Own Surr v - SVM D Surr
Schlechtriemen et al. [38] 2014 Own Ego + surr v Rel. speed GMM G Surr
Schlechtriemen et al. [42] 2015 Own Ego v All surr. RF+GMM | G-P Ego
Yoon et al. [30] 2016 | NGSIM Single v - ANN D Single
Bahram et al. [44] 2016 | Own Ego + surr v Game Theory BN G-P  Surr
Yao et al. [46], [47] 2017 PKU Ego + surr All surr SVM D Ego
Lee et al. [53] 2017 Own Ego + surr v BV Grid CNN D Surr
Deo et al. [33] 2018 | NGSIM | Center + surr v 3X2 Grid LSTM G Center
Deo et al. [48] 2018 | NGSIM | Center + surr v 3X2 Grid LSTM CSP G Center
Patel et al. [49] 2018 Own Center + surr v 3X2 Grid SRNN D-P Center
Li et al. [50] 2019 | NGSIM | Center + surr v 3X2 Grid DBN G-P  Center
Lietal. [52] 2019 | DBNet Ego + surr - Bounding Box | PCA+SVM | D Ego
Kruger et al. [51] 2019 | Own Ego + surr v 3X2 Grid GPNN G Center

Table 2.4: Lane Change Prediction State Of the Art Summary
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State of the Art

2.3

Conclusions

Previous sections have introduced existing public databases and several
algorithms and methods to predict future vehicle states in two different
dimensions, maneuvers, and trajectories. The conclusions extracted
from this in detail review are exposed below:

e There are many pubic datasets available for the development of

24

different Intelligent Transportation System (ITS), even vehicle
prediction models. However, none of them is thought with this
main purpose. There is a lack of datasets to develop specific ma-
neuver prediction and trajectory prediction systems. Maneuver
predictions need specific human work labeling actions. Precise
labeling, defining actions in time, is critical. Humans can under-
stand the scene and figure out or measure these action boundaries.

Top-view datasets are massively used to develop predictive sys-
tems due to their quality and absence of misinformation. Real-
world driving scenarios do not provide this kind of information,
and future deployable systems must be developed from onboard
sensor databases. Lane change prediction technology is closer to
the real-world due to its significant interest by ADAS. For this rea-
son, many works are developed using their own onboard datasets,
which are private.

Most of the reviewed works are limited regarding their input data
structure. Some are limited in the number of vehicles, others in
vehicle configurations, and others are limited to a collection of
experiences.

Road level information is widely used. The acquisition of this
kind of information is hard, and it could not be precise when it is
retrieved from onboard sensors.

Main Contributions

After the review of the state of the art, and considering the discussion
presented before, the main contributions of this thesis are:

e Development of the PREVENTION dataset. An onboard sensor

dataset with the aim to provide specifically designed data for tra-
jectory and lane change prediction models. This dataset is open
and free access to the scientific community.
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e A social study has been conducted to evaluate human performance
to predict lane changes. This study evaluates the PREVENTION
scenes to set the basis for further comparisons between new re-
search works. This study has proved that humans react to ongoing
lane changes instead to predict them. This fact proves that there
is room for improvement over human driving.

e Two novel CNN based models without input restrictions regarding
the number of surrounding vehicles are presented in this thesis.
The maneuver prediction approach is based on a CNN model and
uses appearance to include context and interactions between traf-
fic participants. The trajectory prediction approach is based on
a CNN model and uses vehicle graphic representations to pattern
interactions. The trajectory prediction system is able to predict
trajectories for all the vehicles at a single prediction operation
instead of one-by-one predictions.






Chapter 3

Dataset

This chapter describes the PREdicion of VEhicle inteNTION (PRE-
VENTION) dataset. This dataset has been created in the context of
this thesis to fulfill identified shortages for the development of vehi-
cle intention and trajectory prediction models. In contrast with many
other works, this dataset has been made publicly available. The PRE-
VENTION dataset has been used to conduct a study to evaluate the
human performance predicting lane changes and to develop trajectory
and maneuver predictive models. The study and the developed models
will be detailed in chapters 4 and 5 respectively.

The content of this chapter is structured as follows: section 3.1.1
provides detailed information of the recording platform and the sensor
setup, metadata and manual labels are presented in section 3.2, and
finally, the dataset details are described in section 3.3.

Conclusions derived from the creation of this dataset are summa-
rized in section 5.3.

3.1 Recording Platform

In this section, all the low-level aspects of the PREVENTION dataset
are carefully detailed, including a description of the recording plat-
form, sensor setup, calibration procedures, and time synchronization
mechanisms.

The recording platform is an automated Citroén C4 equipped with
a sort of sensors and hardware. Figure 3.1 shows the mobile platform
with the sensor setup on top of it.
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Figure 3.1: Mobile platform and sensors setup.

3.1.1 Sensor Setup

The image acquisition system consists of two Grasshopper3 cameras
mounting a 12.5 mm fixed focal length lens. The cameras cover a
Field Of View (FOV) of 48° in the front and the back. The sensor is a
SONY CMOS Bayer array with WUXGA (1920x1200) resolution that
can be triggered up to 163Hz.

A Velodyne HDL-32E generates point clouds at a constant rate of
10 Hz. Each cloud is defined by an array of 3D points with 32 vertical
and more than 2000 horizontal samples with all-around coverage and
+10° to -30° vertical FOV. The detection range of the LiDAR is up to
100 m with an error lower than 2 cm.

Three radars complete the perception system. A Continental
ARS308 long-range radar is located centered on the front bumper with
a detection range up to 200 m and a FOV up to 56°. Real-time scan-
ning of tracked objects is provided at 16 Hz. Two Continental SRR208
blind-corner radars are installed in both corners of the front bumper
with a detection range up to 50 m and a FOV up to 150°. Tracked
objects’ information is provided at a rate of 33 Hz approx.

A Differential Global Navigation Satellite System (DGNSS) Trimble
Net R9 Geospatial performs the localization task with RTK capabil-
ity. Geographical coordinates are generated at 20 Hz with differential
corrections received through the 3G /4G network and a Bluetooth con-
nection.
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The Controller Area Network (CAN) bus of the vehicle is monitored
continuously, and many variables such as steering position, braking
pressure, throttle position, speed, acceleration, and gear are available
and logged.

Finally, an IMU MPU6050 complements the localization task. This
low-grade IMU in combination with the CAN bus and the DGNSS data
enables better localization and ego-state estimations by means of an
Extended Kalman Filter (EKF) [54] and a dynamic vehicle model [55].

3.1.2 Data-logging

Data-logging is carried out by three different computers. The central
computer is the control computer of the vehicle, which oversees reading
data coming from CAN bus, radars, IMU, and DGNSS. This computer
generates the ego-vehicle log with the raw data and the time when it
was received. A second computer stores the images coming from both
cameras. The data flow can reach up to 6 Gbps when the cameras are
triggered at their maximum rate. However, in this application, they are
triggered at the LiDAR spinning rate, close to 10 Hz generating a data
flow of 360 Mbps, which can be supported for continuous operation.
The last computer is dedicated to read the LIDAR input and generates
the trigger for the cameras. The custom cloud video file with the
LiDAR measures is stored on this computer. The log files with the
triggering and acknowledgment timestamps of each image are recorded
on the same computer.

3.1.3 Ego-Position Estimation

An EKF has been used to fuse the information coming from the
DGNSS, the IMU, and the CAN bus of the vehicle. The state vec-
tor  is estimated using the measure vector z, the non-linear process
model f, and the observation model h according to the egs. described
in [56], where £ and N are the easting and northing (world) coor-
dinates respectively, ¢ is the heading or forward direction, v is the
longitudinal speed and © is the longitudinal acceleration.

i=[E N ¢ v ¢ 9] (3.1)

c=[B N v § @] 3.2)

i’k = f (‘%k—l) + W, Z= h(i’k) + Vg (33)
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3.1.4 Extrinsic Sensor Calibration

Spatial calibration between sensors has been carried out in order to
enable sensor fusion capabilities. The ego-vehicle reference system is
in the middle of the vehicle over the rear axis, where the DGNSS is
placed. The x-axis and y-axis match with ego-vehicle’s forward and
left movement directions. Consequently, the z-axis points up according
to a Cartesian right-handed system. Three groups of sensors: radar,
camera, and LIDAR have been calibrated to put together all the avail-
able information coming from the environment in a common reference
system. Figure 3.2 shows all the reference systems defined in the vehi-
cle.

Y,
\/ X\Vorld

Figure 3.2: Sensor reference systems in the vehicle frame. All the reference sys-
tems are Cartesian right-handed systems.

Cameras are intrinsically calibrated and extrinsically w.r.t the Li-
DAR according to the procedure described in subsection 3.1.5. Radars
are extrinsically calibrated w.r.t the vehicle reference system with a
procedure based on a Digital Map with known high-sensitive radar
elements such as traffic signals and light poles. This procedure is de-
scribed in subsection 3.1.6. Extrinsic calibration between LiDAR and
vehicle reference system is defined by a constant transformation matrix
composed with a translation vector. The LiDAR is mounted in a fixed
position over a structure built in parallel to the vehicle axes.
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Back cam. Lidar Front cam.

Figure 3.3: LIDAR and cameras reference systems.

3.1.5 Camera and LiDAR Calibration

The extrinsic camera-LiDAR calibration process is based on plane
alignment, and it consists of three steps. The first step calibrates
the intrinsic parameters of the camera and generates the pattern cal-
ibration planes Il from the camera point of view. The second step
generates manually the same planes II;, in the LiDAR point cloud. Fi-
nally, the last step finds the best extrinsic calibration matrix T in
a Singular Value Decomposition (SVD) fashion and a posterior non-
linear optimization algorithm.

The camera-LiDAR calibration process estimates a homogeneous
transformation matrix “T, which allows the transformation of points
pr, from the LiDAR reference system Sy to points po in the camera
reference system S¢, and vice versa according to eq. 3.4.

pc =¢ T -pr (3-4)

Matrix “T, can be expressed as a rotation matrix Rs,3 and a trans-
lation vector t3.1, as it is shown in eq. 3.5.

R t
C 3x3 3x1
T, = 3.5
L [leg 1 ] ( )
In order to avoid ambiguities regarding the orientation of the cali-
bration pattern planes, its equation has been defined in eq. 3.6. Sub
index X represents the sensor point of view, C, or L for the camera
and LiDAR. The second sub index refers to the image-cloud pair .
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x;:ax +by+cz=dd <0||(a,b,c)|| =1 (3.6)

The extrinsic camera-LiDAR calibration process is based on plane
alignment, and it consists of three steps. The first step calibrates
the intrinsic parameters of the camera and generates the pattern cal-
ibration planes Il from the camera point of view. The second step
generates manually the same planes II;, in the LiDAR point cloud. Fi-
nally, the last step finds the best extrinsic calibration matrix “T;, in
an SVD fashion and a posterior non-linear optimization algorithm.

3.1.5.1 Camera Plane Equation Extraction

The camera intrinsic calibration process estimates the intrinsic matrix
K and the lens distortion coefficients. For this purpose, the Matlab®
Computer Vision System Toolbox™has been used. Knowing the pa-
rameters that model the sensor, the calibration pattern plane Il can
be found. Figure 3.4 shows a sample used to calibrate the camera,
which is one of the planes used for the extrinsic calibration.

Figure 3.4: Automatic pattern detection in the camera calibration procedure.
Green points represent points used to calibrate the camera, and the yellow area
represents the plane Il

3.1.5.2 LiDAR Plane Equation Extraction

The equation of the calibration pattern, unlike the camera, is not au-
tomatically generated for the LiDAR. It is necessary to select the cali-



3.1. Recording Platform 43

bration pattern manually in the point cloud for each camera-cloud pair
t. This process has three stages:

e Firstly, the corners of the calibration pattern are manually se-
lected; these points are denoted as Py ;.

e Secondly, a basic geometric segmentation is performed over the
entire cloud to isolate the calibration pattern. The centroid of
the calibration pattern C)y; is computed using the manually se-
lected points Pjs;. An Euclidean-distance based segmentation is
performed using the semi-diagonal length of the calibration pat-
tern dopjp as it is shown in eq. 3.7. Afterward, the manually
selected points are used to estimate a plane IIj; in an RMSE
fashion. The points p; in the cloud 7 are filtered out if they do
not satisfy a certain distance threshold diy w.r.t. II,,;. After this
process, the cloud is pruned out, and the remaining points mostly
belong to the calibration pattern.

d(Cry, Pj) < depja Nd(Ila,, Py) < dn (3.7)

e Iinally, a plane Il ; is fitted using the remaining points p;. A
closed-form robust method has been used to fit the plane (see alg.
1). Firstly, a tentative plane is computed in an RMSE fashion
using all the available points. In every iteration n < N the dis-
tances to the plane d; are computed and sorted, then the points
pj, which their distances are under the percentile P, are removed,
and a new plane is estimated with the remaining points.

Result: IT;,
g = f(Ps);
forn < N do
forj < Jdo

| dj = d(p;,11L);
end
sort(p;, based on d;);
Py=p1,- ,pjP,
I, = f(Py);
end

Algorithm 1: Plane Estimation

Figure 3.5 shows a graphic representation of the calibration pattern
plane extraction. Figure 3.5a shows the whole point cloud around
the calibration pattern in which the manual corner annotations are
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represented with red dots. Figure 3.5b represents a plane cross-view of
the segmented points around the calibration pattern. Blue and green
points represent points that satisfied eq. 3.7. Green points represent
inliers after the fitting procedure described in algorithm 1.

2 o005 \\
5
E o X—g v—:I—P;— 4 - -
g K ' -
g 0.05
-1.9 -1.8 1.7 1.6 -1.5 1.4 1.3 1.2 11
X Y x[m]
(a) LiDAR calibration scene example. (b) Cross calibration plane view.

Figure 3.5: LiDAR calibration pattern estimation.

3.1.5.3 Camera-LiDAR Transformation Matrix Computation

The final step computes a homogeneous transformation matrix ¢T,
according to the description in eq. 3.5.

The camera-camera extrinsic calibration process uses a set of point
pairs as input. However, the corners of the calibration pattern cannot
be detected in the LiDAR point cloud, and consequently, the point
correspondence cannot be established. An alternative calibration pro-
cess based on the alignment of the calibration plane pairs has been
implemented.

The n plane pairs IIo and Il are used to compute matrices 8¢ and
0 and vectors a¢ and o which represents the normal plane vectors
(a,b,c), and the distances to the system reference origin d.

_al PR CLTL_

Oc=|b - b, ac=|d - d (38)
o e
-a’l PR a/n_

Or=|bi - bo|, ap=|d - d)] (3.9)
o e

With this notation, the plane equations can be rewritten as:
Oc - vt = ac (3.10)
0L -p; = oy (3.11)
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The aligning process firstly estimates the translation vector t. Eq.
3.4 can be rewritten as:

pe=R-pr+t (3.12)

The only point which is not affected by the rotation is 0, = (0, 0, 0).
Applying eq. 3.12 to 0, we have po = t. Replacing pc by T and py,
by 0y, and subtracting eq. 3.11 to eq. 3.10 the result is:

00 . tT = (ac - aL) (313)

Eq. 3.13 can be solved now in a Root Mean Squared Error (RMSE)
fashion to find the translation vector t.

The second step computes the rotation matrix R in an SVD fashion.
The rotation matrix must align the director vectors of the plane pairs,
as it is shown in eq. 3.14.

6c =R -6,
0.0. = USV” (3.14)
R =VU?

Finally, a non-linear optimization algorithm finds the minimum of
an unconstrained multivariable function using a derivative-free method
[57]. R is transformed into an unconstrained vector using a quaternion
transformation. The translation vector t is appended to the quater-
nion. The cost function for the optimization routine is the mean abso-
lute distance for each image-cloud pair from P, to the plane Il¢;.

When K and ¢T, are computed, p;, can be transformed to S and
then into S} according with eq. 3.15

uw x
vw| =KOT; |y (3.15)
Wl 1L

where “T} is the simplified transformation matrix (last row is re-
moved). Figure 3.6 shows the projection of the color image over the
LiDAR scans.

3.1.6 Radar Calibration

The radar calibration procedure tries to estimate the transformation
matrix VT that transforms points pg from the radar reference system
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Figure 3.6: Image reprojection over the LiDAR scans after calibration.

Sk to points py in the vehicle reference system Sy according to eq.
3.16. In the case of multiple radars, the transformation matrix allows
transforming points from one radar to each other in a common frame,
thus generating continuous trajectories.

pv =" Tgr pr (3.16)

Figure 3.7 shows a representation of the radar distribution and their
reference systems together with the vehicle reference system.

Radar-vehicle calibration is like camera-LiDAR calibration, but
radars have the particularity to be a 2-dimensional sensor, so the trans-
formation matrix VT can be split into two basic spatial operations,
a rotation Ryyo and a translation toy ;.

Roxa tax1
T = [Ouz 1 ] (3.17)

The calibration procedure splits the estimation of the transforma-
tion matrix in two steps. The first one estimates the rotation matrix,
and the second one, the translation vector. The rotation matrix es-
timation is based on movement properties, but the translation vector
needs to be estimated using points correspondence. The challenge
here is to find the corresponding pair of points in the vehicle and the
radar reference system. The calibration can only be carried out in
a well-known environment. In the next subsections, the calibration
environment and the radar error propagation are described to finally
estimate the rotation and translation parameters.
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World

Figure 3.7: Vehicle and Radars reference systems.

3.1.6.1 Calibration Environment

The calibration method exploits the detection of high radar-sensitive
structural elements that are static, and their location is fixed in a global
reference system. The calibration environment consists of a two ways
road with two lanes per way with a roundabout at each end. There is
a sidewalk with streetlights and traffic signs on both sides of the road.
The streetlights and the traffic signals positions have been used as
ground truth in the calibration procedure. Their positions have been
measured with a DGNSS with an error lower than 2 cm. The recorded
positions are surrounding the vertical pole axis, so the pole axis po-
sition is estimated to be the centroid of the measures. The latitude-
longitude coordinates are transformed into an easting-northing refer-
ence system according to the transverse Mercator projection to get a
flat and orthonormal representation reference system. Figure 3.8 shows
the position of some of the streetlights and the traffic signals in a high
definition digital map representation of the environment.

The position of the calibration elements is transformed from the
world reference system Sy to the vehicle (local) reference system §y .
A transformation YTy is performed according to the vehicle state
vector & defined in 3.1.3.
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Figure 3.8: Radar calibration targets on a digital map. Red spheres represent the
GPS coordinates of the calibration elements.

pv ="Tw - pw (3.18)

where V' Ty is the inverse of W'y, and it is defined as:

cos (¢) —sin(¢p) FE
WTy, = |sin(¢) cos(p) N (3.19)
0 0 1

where ¢, E, and N are ego-vehicle state variables.

3.1.6.2 Radar Measures Error Propagation

The quality of the radar measures varies from close to far detections,
from centered to lateral measures. The measurement uncertainty is a
parameter to consider in the calibration process. The radar detection
accuracy is, in general, provided in a polar reference system just like
the measures are. On many occasions, the positions are transformed
into an orthonormal reference system, according to eq. 3.20, where p is
the detection range, « is the direction of the detection and x and y are
the orthonormal coordinates. The error of the orthonormal coordinates
is propagated as follows:

r = pcos(a), y= psin(a) (3.20)
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ox dy .

o cos(a), o sin(a) (3.21)
or ) dy
0= P sin(a), P pcos(a) (3.22)

Assuming the range error ¢, and the direction error ¢, are indepen-
dent variables the errors ¢, and ¢, can be computed as it is shown in

eqs. 3.23 and 3.24.
or \’ or \°
Ep = <8p€p> + <8048a> (323)

oy 2 dy 2
Ey = ((%ffp) + (aoé€a> (324)

In our case, the position accuracy is limited due to the CAN bus
communication protocol. The objects’ position has a resolution of 0.1
m, which limits the position error to a minimum value, as expressed in

eq. 3.25.

e, =max{0.1,¢,}, ¢, =max{0.1,¢,} (3.25)

When two detections ¢, j are used to compute the direction of the
vector formed by them by using the arctan function, the errors of both
detections are involved in the error of the resulted direction. Eqs. from
3.26 to 3.30 describe the computation of the direction error based on
the points errors.

0 = arctan (Ay/Ax) (3.26)
a0 -1

= 27

0Nz Ay+ Az’ /Ay (3:27)

% ! (3.28)

00y~ Az + Ay?/Ax
Assuming e, and €, are independent variables the direction error gy
can be computed as follows:

90 > (o8 ?
Ep = \l <M‘€Am> + (aA:ygAZ/) (329)

EAs = Eu; T Eg; » EAy = Ey; T &y, (3.30)

The error analysis of each position and the angle formed by two of
them set the basis to formulate the rotation and translation estimation
in a scoring fashion.
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3.1.6.3 Radar Rotation Estimation

The rotation calibration process estimates the radar rotation angle 0y
that aligns the vehicle reference system §y, and the radar reference sys-
tem Sgk. The matrix R is a two-dimensional rotation transformation,
according to eq. 3.32 and depends only on the parameter 0.

pv =R pr (3.31)

cos () —sin (0g)
sin (Ag)  cos(0g)

As far as the relation between the radar detections and the targets
is unknown, the traditional calibration approaches based on pairs of
points cannot be conducted. An alternative methodology based on
the relative movement properties of static objects has been developed.
The trajectory described by a static object is seen from the sensor ref-
erence system as the opposite of its trajectory. If the mobile reference
system (vehicle) performs a trajectory in a straight line, the trajectory
of the static object is seen as a straight line in the opposite direction in
the sensor reference system. The angle of the trajectory in the sensor
reference system reveals the rotation angle 6 needed to align both ref-
erence systems virtually. Figure 3.9 illustrates the trajectory of a static
object from the radar point of view, while the vehicle is performing a
straightforward trajectory.

R = (3.32)

»X

Figure 3.9: Trajectory of a static object from the radar point of view while the
vehicle preforms a straightforward trajectory.

Trajectories generated by the objects are a sequence of points in the
radar reference system §z. A single trajectory P is formed by a set of
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n points p as it is defined in eq. 3.33, where the sub index represents
the time-order of the points.

P= {p17p27"'7pn} (333)

If the trajectory represents a straight line, the orientation can be easily
computed as the arctan function of the extreme points. However, due
to the radar detection accuracy, this way is not the best. The end-
points of the trajectory are commonly in the limits of the detection
area, where the detection error is high. A set of tuples of points TP
associated with the trajectory P is defined in eq. 3.34, which generates
all the possible combinations of points in the trajectory P in a forward
time sense.

TP = {(pi,p;) | (pispj) €P, pi #pj, 1 < j} (3.34)

The trajectory direction 6 is computed for each tuple of points in
TP according to eq. 3.26. The error associated to each computed
direction ey depends on the individual point errors. The orientation
error formula is described in egs. from 3.26 to 3.30.

Many rotations and their associated errors have been computed for
each trajectory P. The trajectories described by many detections must
be commonly evaluated to achieve the most reliable value of #. The
scoring function proposed to evaluate the set of rotations and errors
in a scoring fashion is a normal distribution N (i, 0?) with mean value
i = 6 and standard deviation ¢ = gy. The shape of the scoring
functions is shown in figure 3.10.

s1(0,0,0) = N (0,20%) (3.35)

1/ev?2 x
/6 " _31(970#50)

0—3c0—2 0—¢c 0 O+¢c 042 0+3¢
Figure 3.10: Radar rotation scoring function.
The global score is computed as the sum of each score distribution,

according to eq. 3.36, where n is the total number of scored angles.
The total score distribution is normalized in order to be treated as a
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probability density function and to provide a confidence interval of the
estimation.

Sl (é) = Z Sl(é7 Qia 691-) (336)
=1

Finally, the radar rotation angle fr is minus the 6 value with the
highest cumulative score according to eq. 3.37 due to the opposite
direction of the relative object’s movement.

— 0 = argmax S(0) (3.37)

0 € (—2m2n)

3.1.6.4 Radar Translation Estimation

Once the rotation between the vehicle and the radar reference systems
is known, and they are virtually aligned, the position difference be-
tween targets and detections is the translation that is being looked for.
Figure 3.11 shows a representation of the relation between the radar
measures and the world objects after the alignment process.

Translation Vector = Measurement - Digital map + Ego Localization

Yr

Measurement

Signal/Light

Translation Vector Pole

Digital map
Target position
Ego Localization

Y

Figure 3.11: Radar detection and calibration target representation. The world po-
sition of the calibration targets can be computed as the sum of the ego-vehicle
localization, the radar translation vector, and the radar measure.

Translation estimation has three stages. Firstly, the world points
are transformed into the vehicle reference system, according to eq.
3.18. In order to avoid time delays between the radar detection and
the ego-estimation, static sequences are used to compute the transla-
tion vector. Secondly, the radar detections and their errors are rotated
to be aligned with the vehicle reference system, according to eq. 3.31.
Finally, the vehicle-radar translation is achieved by scoring each indi-
vidual detection-target translation.
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A two-dimensional translation vector t defined in eq. 3.38 is needed
to transform calibration targets to detections in the common vehicle
reference system and vice-versa. The parameters that need to be found
are t, and t,, which are the translation along the x and the y axis of
the vehicle, respectively.

t
b — M (3.38)

The translation vector t has been limited by using basic information
of the vehicle dimensions. The translation vector limit t; is defined in
equation 3.39 where W and L are the width and length of the vehicle
and d, and ¢, a safety gap to avoid possible exclusions due to the radar

detection errors.
| L+,

The set of translation vectors TV is defined in eq. 3.41 as all the
combinations of translation vectors t; ; for each radar detection d; to
each calibration target ct;. The translation vector is computed as it is
shown in eq. 3.40. If t; ; exceeds ty, the pair d; and ct; is assumed as
a wrong matching and consequently is excluded from the translation
estimation process.

ti,j = Ct]’ — dl (340)
TV ={ti; | —tL <ti; <to} (3.41)

The error associated to each translation ¢;; is defined as the error
vector g;, = (&g, €y, ) Which is the result of the detection error rotation.

A similar bi-dimensional scoring function has been used to find out
the translation vector. The score function is a normal distribution
N (p, 0?) with mean value p = t and standard deviation o = g; as it
is defined in eq. 3.42. The shape of the scoring functions is shown in
figure 3.12.

sat,t ) =V (t,6%) (3.42)

Finally, the global translation score is computed as the sum of each
single translation score function, as it is shown in eq. 3.43 where n is
the total number of valid detection-target translations.

8 (2) = 3s (b ti.e1) (3.43)
i=1
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Figure 3.12: Radar translation scoring function.

The estimated radar translation vector t is achieved finding the
translation vector t with the highest Sy score inside the translation
limits t;, according to eq. 3.44.

t = argmax S (’E) (3.44)
—tp <t<tp
Figure 3.13 shows an example of the radar detections after the cal-
ibration process. Detections of the three radars are commonly repre-
sented in the vehicle reference system.
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Figure 3.13: Radar reconstruction. Black circles are calibration targets, blue x are
ASR308 detections, red x are SRR-L detections, and green x are SRR-R detections.
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3.1.7 Time Synchronization

The perception system is composed of sensors of three different types;
camera, LiDAR, and radar. They are recorded on three different com-
puters. Spatial-temporal relations between measures are critical when
sensor fusion techniques are applied. Focused on this, time synchro-
nization mechanisms are deployed.

Some sensors such a radar, LIDAR, IMU, or CAN bus produce a
non-controllable data output. Others, like cameras, are actively trig-
gered, and the data output is known and expected. Two different
approaches have been used as a time synchronization mechanism to
cover both kinds of data streams.

e Uncontrollable data sources. The clock of the recording com-
puters is synchronized in a common time reference employing a
GPS Pulse Per Second (PPS) signal and a Network Time Proto-
col (NTP) server. Thus, different recording computers can add
a common time stamp to data coming from different sensors at
different locations.

e Controllable data sources. Cameras must be externally triggered,
and consequently, the data output is actively generated. Cameras
are individually triggered when the LiDAR points in the same
direction where each camera is pointing to. This guarantees min-
imum point cloud distortion in the area covered by the cameras.
A dedicated computer develops the triggering task and stores the
timestamps when the cameras were triggered and when they ac-
cepted the trigger signal, which means that the images have been
captured.
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3.2 Manual Labels and Metadata

This section describes the manual annotations and metadata gener-
ated from raw data to enrich the PREVENTION dataset. This ef-
fort focuses on providing useful high-level information from raw data.
Ground plane coefficients and lane markings are provided as comple-
mentary context information. Vehicles have been segmented in the
image and temporarily tracked, providing unique IDs for each one.
Improved vehicle trajectories are computed fusing image and LiDAR
information. Furthermore, finally, manual annotations of observed ac-
tions such as lane changes are provided.

3.2.1 Ground Coefficients

The LiDAR points are used to determine the principal plane of the road
structure. The plane model is fitted using a fixed region around the
ego-vehicle. A cube with 20 meters edges is defined to select the points
used to segment the plane. The ground plane coefficients have been
computed using a RANdom SAmple Consensus (RANSAC) algorithm.
The ground model is used to remove ground points and to generate
top-view representations.

3.2.2 Vehicle Detections and Tracking

Focusing on vehicle intention and trajectory prediction tasks, vehicle
detections are segmented and labeled with a unique ID. The segmen-
tation of the relevant actors is automatically generated using the De-
tectron framework [58]. To do so, the top-class state-of-the-art Mask-
R-CNN [59] model with a ResNet-101 [60] backbone is used as in-
stance segmentation engine. The raw output detections are provided
as bounding boxes and contours. Moreover, the temporal integration of
the detections is provided. First, the detections with a confidence value
lower than 0.5 are filtered out and considered as false positives. Then,
a non-maximal suppression algorithm is applied. Figure 3.14 shows an
example of automatic vehicle detection after the filtering process.
Finally, detections are temporally associated using a Hungarian Ma-
trix algorithm [61]. The parameter used as the distance between el-
ements is the inverse of the modified Intersection over Union (IoU).
Eq. 3.45 presents the modified IoU, where A; and A, are the evalu-
ated contour areas. The vehicle shape could change along frames being
affected by perspective, becoming bigger or smaller. There is no case
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Figure 3.14: Vehicle detection example.

where the intersection of two areas can be greater than the largest of
the areas, and this can happen when two shapes of the same object
are evaluated at a different time. This formula tries to adapt the IoU
to this time-varying representation problem.

mloU = A1 N AQ/ min {Al, AQ} (345)

If the two detections are linked, the new detection adopts the ID of
the previous one, creating a sequence of detections for the same ID.

3.2.3 Precise Trajectory Generation

LiDAR has an extremely accurate range detection. However, the an-
gular resolution is limited by its turning rate. For our configuration,
spinning at 10 Hz, the LiDAR angular resolution is 0.179°. This num-
ber could seem small, but it is amplified by the detection range when
a polar to cartesian transformation is applied. In contrast, the camera
has a much higher angular resolution. A 1920 pixel width with a 12,5
mm focal length lens, the camera angular resolution is 0.027° . Table
3.1 shows how the angular resolution affects the horizontal error versus
the detection distance. The camera is much better than the LiDAR
regarding the horizontal resolution and the corresponding lateral error.
Despite the camera goodness, it does not provide range measures, so
the camera cannot produce 2D or 3D detections. Improved position-
ing, and consequently, improved trajectories can be generated fusing
LiDAR range and horizontal camera detections.

An image point (u,v) cannot be transformed directly into the 3D
camera reference system. The pin-hole camera model generates a 3D
straight line equation for each given point (u,v) in the image plane,
according to eq. 3.15. This means that multiple solutions are possible



58 Dataset

Target Distance 10 20 50 100 [m]
Camera Resolution 2.2 44 109 219 [mm]
HDL-32E Resolution 15.6 31.2 78.1 156.2 [mm)]

Table 3.1: Horizontal Positioning Resolution.

but knowing one of the coordinates of the point z¢, yo, or z¢, the
others are fixed. Making use of the camera-LiDAR extrinsic calibra-
tion described in 3.1.5, the LiDAR detections can be transformed into
the camera reference system and be used to solve the indeterminacy
problem. The key is to select the most accurate measure from each
sensor as it was exposed above. The z and y coordinates are generated
using the precise grid representation of the camera. The z coordinate,
also called depth, comes from the LiDAR. The z camera coordinate
is mostly related to the x coordinate of the LiDAR according to the
sensor configuration (see figure 3.3). Eq. 3.46 shows the transforma-
tion from polar to cartesian LiDAR coordinates where p is the range,
¢ is the elevation angle, and # is the azimuth angle. Note that lateral
resolution affects y; mostly because of the sin(f) term, however, zy, is
affected by the cos(f) term which is much less sensitive to the change
in the area where 6 resolution and p takes relevance. This happens at
far distances in the front and the back of the vehicle.

xp = pcos(o) cos(d)
yr, = pcos(¢)sin(0) (3.46)
zr, = psin(¢)

Combining the camera and the LiDAR, the measurement range is
extended virtually to 100 meters. However, due to the LiDAR layers
distribution, the maximum detection range over the ground plane is
reduced to 75 m. Figure 3.15 shows the relevant LiDAR layer dis-
tribution regarding this limitation. The first tilted down layer has an
elevation of —1.33°, this layer intersects with the ground plane approx-
imately at 85 m. However, the vehicles are not in contact with the road
on the front or back bumper. Assuming a maximum clearance of 0.3
m w.r.t the ground plane, the maximum detection distance decreases
to 72 m. The horizontal layer can detect vehicles with heights above
the LiDAR location (2 meters), such as vans, trucks, and buses, and
the detection range is not reduced.

For a precise trajectory reconstruction fusing image and LiDAR
data, two things are needed: an image coordinate (u,v) and the cor-
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Figure 3.15: LiDAR detection range.

responding depth. The depth is provided as a LiDAR measure with a
very precise x, coordinate.

3.2.3.1 Image Labeling

Manual labeling of all the vehicles in all the frames is a monotonous
time-consuming task. A state-of-the-art Median-Flow tracker algo-
rithm has been used in order to semi-automate the labeling process.
Initially, the tracker is set up with a Region of Interest (ROI) con-
taining the desired key point to be tracked and consecutively updated.
This supervised tracking reduces the labeling time, and the labeler
can always change the points and reinitialize the tracking if the per-
formance is not good enough. It is important to note that the tracked
key point will be used to determine the vehicle location, so it must be
laterally centered on the vehicle.

Figure 3.16 shows an example in which the vehicle center is labeled
a single time, and it is correctly tracked for more than 30 frames with-
out modifications. The green rectangle represents the area tracked by
the algorithm, and the red plus symbol is the ground truth for the
corresponding key point. Commonly the band logo is used as the key
point for the tracking because it is commonly placed in the middle of
the front and rear bumper. Other times the license plate is used as the
key point as well.
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Figure 3.16: Vehicle key point tracking using Median-Flow tracking algorithm.
From left to right, tracker initialization and key points after 1, 2, and 3 seconds
of tracking. Different zoom levels are applied in each image, 1, 2, 4, and 8 zoom
factor respectively.

3.2.3.2 Depth Estimation

Once the vehicles or a part of them are labeled, it is necessary to
assign a depth value or z coordinate to this region. The z coordinate
is computed using the LiDAR point cloud. This process has four steps:

e First, the LiDAR points under 0.2 m from the ground plane are
removed for better depth estimation.

e Second, the LiDAR point cloud is projected over the image plane.

e Third, the points that fit inside a vehicle detection are associated
with that vehicle.

e Finally, the closet point of each vehicle is used as a depth estima-
tion for that vehicle detection.

The vehicle’s 3D coordinates can be computed in the camera ref-
erence system using the image coordinate and the depth value. Fig-
ure 3.17 shows an example of the trajectory reconstruction using the
Median-Flow tracking algorithm and the depth estimation. This rep-
resentation shows two trajectories, one in the back of the vehicle (with
negative longitudinal values) and other in the front of the vehicle (with
positive longitudinal values). The red trajectory was generated select-
ing the points manually in the point cloud. The low lateral resolution
of the LiDAR produces lateral jitter coordinates. The green trajectory
uses the manually selected points in the LiDAR as depth value and
manual annotations on the image. This trajectory is the best that can
be achieved fusing LiDAR and camera data but with a high manual
effort. Note that even using jitter LIDAR points, the lateral coordi-
nate does not jitter because of the camera lateral resolution. The blue
trajectory is computed using the semi-automatic procedure described
above. This method outcomes LiDAR trajectories and reduces manual
labeling effort.
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Figure 3.17: Camera and LiDAR-based trajectory reconstruction.

3.2.4 Maneuver Registration

The essential feature when addressing the lane change and trajectory
prediction problem is the lane change annotations. These annotations
record the events and actions that take place on the road. Events or
actions can be classified into two categories attending to its duration.
They can be instant actions, such as the blinker’s trigger, the activation
of the braking light, or the moment when the vehicle crosses the divisor
line between two lanes, or actions developed over the time, such as lane
changes. Regarding the type of action or event, the most common in
highway scenarios are the lane changes. A lane change can be a left
or a right lane change. This set can become more complicated if the
ego-lane is included in the classification. There could be cut-in and
cut-out maneuvers combined with left or right lane changes. Merging
actions from entry ramps or leaving actions to exit ramps can be also
combined with the primary type of lane changes.

All the lane changes and relevant observed actions have been care-
fully labeled. The lane-change maneuvers are meticulously reviewed;
images are visualized in forward and backward sense to establish pre-
cisely the starting frame of the lane changes, the frame when the vehicle
crosses the divisor line between lanes, and the moment when the action
has finished. The following criterion is used to set the beginning of the
lane change: the earlier from the beginning of the lateral movement or
the blinker’s activation. Note that the blinker’s activation could take
place a few seconds before the vehicle begins its maneuver.

Figure 3.18 shows an example of a lane change labeling. Figure
3.18a is the first frame when the turn indicator is seen activated. This
frame sets the beginning of the lane-change maneuver. Figure 3.18b
shows the first frame when the lateral movement of the vehicle is ob-
served, 24 frames later of the blinker activation. Figure 3.18c shows the
frame corresponding to the Lane Change Event (LCE). Finally, figure
3.18d shows the end of the lane change, when the lateral movement of
the vehicle has ended up.
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(c) Lane change event. (d) End of lane-change maneuver.

Figure 3.18: Vehicle lane change sequence.

3.2.5 Lane Detection

The road configuration is of paramount importance to understand the
context situation. The relative positioning of surrounding vehicles
w.r.t. the road lanes enhances the scene understanding. A custom
lane detection system [62] detects and tracks each road lane marking.
The images are analyzed into a BEV perspective. The original image
is converted to a BEV representation according to the ground plane co-
efficients. A BEV mask is also created including the vehicle detections
(see figure 3.19a) to support the lane extraction process. A median
filter operation processes the original input image. The median filter
image is subtracted to the original one, and the result is thresholded
using an adaptive threshold. The contours generated after this process
are shown in figure 3.19b. Finally, the contours are filtered by size
and shape to remove some noise. The remaining contours are used to
fit the lane models. Figure 3.19¢ shows how easy the lane models fit
over the lane markings in the BEV representation. Figure 3.19d shows
the same lane models over the perspective image. It can be observed
that the vehicle occlusion does not alter the lane estimation in the
right-most lane.

Lanes are modeled as a 2" order polynomial according to eq. 3.47
where ¢ is the lateral distance to the line, c; is the angular misalign-
ment and ¢y represents the lane curvature.

y = e’ + 11 + ¢ (3.47)
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(a) BEV Mask. (b) BEV lane contours. (c) BEV lane detections.
. Y Ll ‘ i a e

(d) Lane detection on the original image.

Figure 3.19: BEV lane detection process.
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3.3 Dataset Structure

The PREVENTION dataset contains thousands of examples recorded
on real driving conditions and different environments to provide spe-
cialized data for the prediction of vehicle intentions and trajectories.
The PREVENTION dataset presents the following characteristics:

e Data from 6 sensors of different nature (laser, radar, and vision)
are provided, contributing to redundancy and fault-tolerant devel-
opment. Measurements from the 6 sensors are time-synced and
cross-calibrated [63] [64].

e Surrounding data are provided in a range of at least 80 meters
around the ego-vehicle (up to 200 meters in the frontal area). This
allows for developing a safety area around the ego-vehicle in which
all vehicles entering or leaving such area are carefully located and
tracked to predict their most likely trajectories accurately.

e Positions of all vehicles around the ego-vehicle are accurately la-
beled in a semi-automatic process [63] and made available to-
gether with their respective vehicle IDs. The fusion between the
appropriate sensors is carried out in order to obtain as much an
accurate positioning as possible, both in lateral and longitudinal
dimensions.

e Road lane markings are included in the dataset, providing the
relative positioning of all vehicles on the road (lateral positioning
and orientation), including the ego-vehicle and the number and
type of road lanes present on the road. This information is es-
sential for enhancing road scene understanding and for providing
contextual framing.

e Ground plane coefficients are provided to enable road-based trans-
formations such as BEV.

e PREVENTION dataset also offers specific types of critical ma-
neuvers that are of interest for prediction purposes. Maneuvers of
surrounding vehicles are carefully labeled to identify critical situ-
ations such as overtaking, merging, and lane-change maneuvers.

In this section, the structure of the PREVENTION dataset is de-
tailed. This includes a description of the recording area, a list of the
provided data, and how it is structured.
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3.3.1 Driving Environments and Driving Style

PREVENTION dataset contains both urban and highway scenarios,
but it is mainly oriented to predicting intentions and trajectories on
highway environments. Urban areas are limited to the campus area
and some residential areas before entering the highway. Three different
person drove the car to generate the data. Drivers were instructed to
arrive at the destination following the traffic rules. Drivers used the
cruise control at their will. A total length of 6 hours and more than
500 km were recorded in five different days and three different areas.
Table 3.3 summarizes the recording details. The A2 and A3 are both
three-lane highway areas with straight stretches mostly. The M-50
and M-40 are the outer and middle rings around the city of Madrid,
respectively. These rings have three lanes or more. The recordings
were made during the central hours of the day to avoid heavy traffic.
However, traffic jams and congested traffic can be found in the dataset.
Some of the records cover the same driven areas. By doing so, different
behaviors and interactions can be observed at the same location with
different points of view. This dataset is not created for localization
algorithms, but it can be used to develop them with multiple records
of the same areas.

Table 3.2: Dataset Recording Main Features

Record#| Drives Area Date  Length Distance
1 A2 1 21%Jun 18 min 47 km

2 A2, M50, A3 2 19" Jul 59 min 83 km

3 A2,M50,A3 2 24t Jul 57 min 86 km

4 A2, M-40 3 18" Oct 108 min 149 km

5 A2, M-40 3 22 Nov 114 min 175 km
Total - - 356min 540 km

3.3.2 Data Access

The dataset is publicly accessible at http://prevention-dataset.uah.es.
For simplicity, all the files of each drive have been packaged in two files
due to the large size of the raw data. The post-processed data and the
labels can be downloaded independently.
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3.3.3 Data-format

The database format is structured as follows, where X, Y, N, and M
are used to define the record number, the drive order in each record,
the camera identifier, and the radar identifier. Figure 3.20 shows the
directory tree of a record.

DATABASE
RecordX
+— DriveY
+— detection_cameraN

— detections.txt

+— detections_filtered.txt
+— detections_tracked.txt
+— labels.txt

+— lanes.txt

+— lane_changes.txt

— trajectories.txt

+— detection_cloud

l— ground_coefficients.txt

+— detection_radar

L detections_radarM.txt
+— logs
t log_ego-vehicle.txt
log_cameraN. txt
+— pcap_radar.pcapng

+— video_cameraN.raw

— video_velodyne.bin
+— cameralN_extrinsic_calibration.dat
+— cameralN_intrinsic_calibration.dat

+— radarM_extrinsic_calibration.dat

»— velodyne_extrinsic_calibration.dat

Figure 3.20: Dataset Format.

Extrinsic and intrinsic sensor calibration files are provided for each
record. These calibration files enable the transformation of data be-
tween the different sensor reference systems. Two camera-LiDAR, one
LiDAR-vehicle, and three radar-vehicle transformation matrices are
provided for each record. Transforming points from radar to the vehi-
cle reference system assumes that radar detections are at z = 0.
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Each drive contains raw sensor inputs. Two raw camera videos, a Li-
DAR cloud video, and radars data transmissions are provided for each
drive. The original image size has been reduced to 1920 x 600, remov-
ing the top and bottom bands 1920 x 300 with irrelevant information
to keep the file size smaller. Fach image is stored as 1920 x 600 bytes
in a BayerBG pattern codification. Camera calibration files have been
modified to work properly with the new camera resolution. LiDAR
data is codified in a custom cloud video data format. Each frame has
a fixed size and stores the cloud number, the GPS triggering time, the
3D information, and the returned intensity. The cloud video structure
definition is provided together with the cloud video file. Radar data is
provided in a parsed format in a text file due to the complex parsing
procedure.

Folder detection_cameraN contains different information ex-
tracted directly from or related to images:

e detections.txt provides automatically generated bounding
boxes and contours of objects in the scene.

e detections_filtered.txt are the same detections with a
minimum confidence value of 0.5 and non-maximal suppression.

e detections_tracked. txt isthe result of a temporal tracking
of the filtered detections, assigning a unique id to each object
along the frames. Data is stored as a sequence of [frame, id,
class, x;, yi, xf, ys, conf, n] values followed by n tuples of z,y
coordinates that represent the contour. Values z;, y; and xy,
ys represents the top left and right bottom coordinates of the
detection bounding box. There are more than 4 million detections,
including vehicles and pedestrians. More of 3.5 million of these
detections are cars and 0.5 are trucks. Pedestrian, motorcycle,
bicycle, and bus classes are a minority. This is explained because
most of the recording time was on highways,where pedestrians
and bicycles seldom appear.

e labels.txt is a sequence of [frame, id, x, y, width, height]
values for each manual annotation that describes a key point lat-
erally centered on the vehicle. These annotations are used to
compute the vehicle improved trajectories. There is a total of 1.3
million of manual annotations that identify unequivocally each
vehicle with a unique id and the image coordinates that represent
its positions along the frames.
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e lanes.txt is a sequence of [frame, n, cy, c1, co] values that
represents the n lane lines in the scene as a 2" order polynomial
(Eq. 3.47).

e lane_change.txt is a list of seven values [id, type, f0, ff,
vall, val2, val3]. The first value id is the id of the vehicle which
the action is referred to. Note that all the registered annotations
are object oriented. The second value type encodes the type of
registered event or action. The third value f0 is used to establish
the event frame for instant actions or the beginning of a time-lapse
action and ff represents the end of the time-lapse action. Vari-
able type could be left (1), right (2) for lane changes, hazardous
(3) such as stopped vehicles on the shoulder, or emergency vehicle
overtaking, and zebra crossing (4) for pedestrian oriented action.
Variables from vall to val3 are used to provid extra information
of lane-change maneuvers. The LCE;, is stored in wall, and the
use of the blinker in vwal2. Variable val3 adds information to the
lane-change maneuver and can take values cut-in (1), cut-out (2)
when the vehicle arrives to or leaves the ego-lane or none (0) oth-
erwise. More than 900 lane changes have been manually labeled.
Table 3.3 shows a summary of the basic lane change types left or
right for each record.

Table 3.3: Lane Change Statistics

Record # 1 2 3 4 5 |Total

Left 22 36 46 139 170| 413

Right 51 48 47 175 178 | 499
Avg. frames per LC 4