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Abstract— In this paper we present a probabilistic lane-
localization algorithm for highway-like scenarios designed to
increase the accuracy of the vehicle localization estimate. The
contribution relies on a Hidden Markov Model (HMM) with a
transient failure model. The idea behind the proposed approach
is to exploit the availability of OpenStreetMap road properties
in order to reduce the localization uncertainties that would
result from relying only on a noisy line detector, by leveraging
consecutive, possibly incomplete, observations. The algorithm
effectiveness is proven by employing a line detection algorithm
and showing we could achieve a much more usable, i.e.,
stable and reliable, lane-localization over more than 100Km of
highway scenarios, recorded both in Italy and Spain. Moreover,
as we could not find a suitable dataset for a quantitative
comparison of our results with other approaches, we collected
datasets and manually annotated the Ground Truth about the
vehicle ego-lane. Such datasets are made publicly available for
usage from the scientific community.

I. INTRODUCTION

Autonomous systems require an accurate understanding

of the surrounding environment in order to safely plan their

actions. For intelligent road vehicles one such fundamental

perception task concerns the localization of the vehicle.

Autonomous vehicles cannot always rely on global position-

ing systems based on Global Navigation Satellite System

(GNSS) signals (e.g., GPS) because they use to undergo

multi-paths and physical barriers, leading sporadically to

very poor position accuracy or even to no estimate at all.

Therefore navigation modules usually couple the GNSS sys-

tems with cartographic maps and methods that leverage the

road graph network as well as other common features [1]–

[5], e.g., buildings or roundabouts, which are retrieved from

well-established cartographic services like OpenStreetMap.

The maps represent an important piece of information that

can be exploited as prior in the localization context. Even

though these methodologies, usually known as lock-on-road
procedures, see, e.g., [6], [7], led to remarkable increases

in the localization accuracy, they still do not use to achieve

lane-level localization, i.e., accuracies in the order of 0.1m

[8]. One of the main disadvantages of today’s mapping

services is their coarse accuracy with respect to the road

segments, i.e., the alignment between the road graph and the

satellite imagery is not usually reliable. Moreover, due to

the collaborative nature of some of such services, together

with a lack of automatic testing and validation procedures of

the contributions, the accuracy is not consistent within the

database.

Interesting approaches, originally proposed in the pho-

togrammetry research field, try to solve this problem by

Fig. 1: Two frames from the proposed annotated dataset, with

the overlaid detector output. In the first image, the vehicle

was traveling in the A4 highway, Italy, performing a lane

change. The second image depicts a frame from the A-2

highway, Spain.

means of satellite imagery parsing. In the robotics and

computer vision fields, former attempts addressed only the

extraction of the road areas [9], although the most interesting

works also exploit mapping services. The authors in [10]

propose to segment road regions leveraging aerial images

and supervising the process using publicly available road

vector data, but their approach is not aimed at updating the

map service database. The authors in [11] explicitly propose

to enhance the OpenStreetMap road graph by including

information about road width and road segments center-

lines. These enhancements are extremely valuable in the

context of vehicle localization, since errors in road center-

lines represent the most common source of inaccuracy when

using features from map services as the main clues to

perform localization. Recently, the same authors extended

their work including both aerial and ground-level imagery

[12], introducing a fine-grained road semantics that includes

lanes, sidewalks and parking lots. Pursuing lane-level local-

ization, the authors in [13] propose to exploit the objects

present in the surrounding of the vehicle and to describe the

probabilistic dependencies between the object measurements

by means of a factor graph model. A similar proposal came

from the authors of [14], where Histogram of Oriented

Gradients are used to align the images acquired from a front

facing camera to the road lane markings, to improve the
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vehicle localization. Other works, aimed at enriching the

maps with additional high-level features like lanelets, have

been recently presented, e.g., [15]. Here the authors introduce

a novel specification for autonomous driving maps, which

allows them to include also traffic regulation rules, known

as tactical information.

In this paper, we present a probabilistic method aimed at

enhancing the ego-lane estimation obtained from a simple

line tracker. The tackled problem, also known as host-lane

estimation, consists of the identification of the current lane

occupied by a vehicle, given the number of lanes of the road,

retrieved from a service like OpenStreetMap, and a GNSS

prior.

Differently from other works available in the literature,

here we present a modular, hence reusable, algorithm aimed

at improving the lane-level localization that can be obtained

from a generic line detector. The system relies on a Hid-

den Markov Model (HMM) with a transient failure model,

which allows us to accommodate inaccurate or missing road

marking detections.

The paper is organized as follows. Section II provides

an overview of the existing ego-lane estimation literature,

Section III describes the proposed algorithm and Section IV

discusses the experimental configuration. Finally, Section V

critically presents the experimental results of the system,

followed by our concluding remarks.

II. RELATED WORK

Ego-lane estimation for autonomous driving has been

extensively investigated in the last decades. The first achieve-

ments were obtained by the group of Prof. Dickmanns

[16], exploiting a road representation model by means of

clothoids, updated using Kalman filters. Starting from these

remarkable results, an active research has been conducted

in the successive years [17]–[20]. Heterogeneous modeling

techniques including parabolas, clothoids, poly-lines or b-

splines were proposed, typically computed from images, after

some preprocessing phases designed to remove clutter and

irrelevant areas.

One of the major challenges for these algorithms is the

detection of the road surface. Achieving a good detection

of the road surface is crucial since it is the basis for more

complex tasks, but this detection is usually adversely affected

by the large amount of clutter usually found on real roads.

While faded road markings, unusual or specific weather

conditions, or even light variations might severely affect the

road surface detection, the visibility of the road surface is

quite frequently hampered by the presence of other vehicles,

thus requiring further considerations to solve the problem.

Most of the current Advanced driver-assistance systems

(ADAS), like Lane Departure Warning (LDW) or Adaptive

Cruise Control (ACC), require just a partial understanding

of the whole observed scene, like vehicle’s lane lines or lane

crossing points in highway-like scenarios [21], [22].

For what sensing concerns, even though LIDAR-based

algorithms sport the advantage of active lightening, vision-

based algorithms represent today the most frequently used

approach for line detection and ego-lane estimation, since

road marking are designed to be human-visible in mostly all

driving conditions [21]. Many authors propose to increase

the performance of ego-lane estimation algorithms with

additional road information gathered by map services and

with information provided by GNSS.

An interesting approach is presented in [23], where the au-

thors tackled the ego-lane estimation as a scene-classification

problem. They infer the lane number in a holistic fashion,

leveraging both spatial information and objects around the

vehicle, and finally training the best classifier with different

learning algorithms. In [24] the author presented a robust

lane-detection-and-tracking algorithm combining a particle

filtering technique for lane tracking and RANSAC for the

detection of lane boundaries. The work detects left and right

lane boundaries separately, without exploiting fixed width

lane models, and combining lane detection and tracking

within a common probabilistic framework.

To deal with ego-lane estimation the authors in [25], [26],

respectively in highway and urban scenarios, propose to

exploit boosting classifiers and particle filtering approaches.

A similar research was performed by [27], where multiple

evidence from a visual processing pipeline was combined

within a Bayesian Network approach.

Close to our proposal are the works in [28]–[30], where the

authors specifically address the multiple-lane detection prob-

lem. In [28] multiple lane detections are performed after a

first processing phase, in which the authors identify the ego-

lane geometry. Then, adjacent lanes are first hypothesized

and then tested, assuming same curvature and width for all

lanes, a fair assumption for most of multi-lane roads, in-

cluding highways. Similarly, the work proposed in [29] also

considers highway scenarios and parallel lane markings, with

respect to the detected ego-lane. More recently, the authors in

[30] proposed a multi-lane detection algorithm based again

on a hypothesis generation and verification scheme, ensuring

an accurate geometric estimation by means of a robust line

fitting pipeline and vanishing point estimation.

Differently from the other contributions, where the authors

propose new detection pipelines for the ego-lane estimation

problem, here we introduce a generic scheme for lane filter-

ing, aimed at improving the ego-lane estimation capabilities

of potentially every line detector. Also the output of a

lane detection algorithm could be fed into our algorithm,

to increase its performance in ego-lane estimation. Our

aim is to enhance the localization capabilities of the scene

understanding framework proposed in [7], introducing a lane-

awareness module capable of reducing localization errors in

highway-like environments. As a by-product, we can easily

compare the localization results obtained with and without

the new proposed algorithm.

III. PROPOSED ALGORITHM

Starting from a rough global localization as well as the

detections of the road markings, the goal of the proposed

algorithm is to estimate the vehicle ego-lane, to achieve in-

lane localization accuracy in highway scenarios. The algo-
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Fig. 2: An example of a moderately congested condition on

the A4 (Turin - Milan - Venice - Trieste) highway, Italy. Even

at this moderate level of congestion most road markings are

hidden by traffic.

Fig. 3: Left: Only one of four lines are detected. Right: The

highlighted lanes (two and three) have a higher probability

of being the vehicle ego-lane, as the evaluation of the relative

distance w.r.t. detected line implies.

rithm is designed to tolerate occasional temporary failures of

a basic line detector as well as its noisy measurements. A line

detector is a software component that detects and tracks the

relative position of both dashed and continuous road lines,

with respect to the vehicle.

On the one hand, the estimation of the vehicle ego-lane

can be considered as a by-product of the line detection

procedure. In fact, the position of all the lines within the road,

relative to the vehicle, might allow us to evaluate the current

lane using simple geometric considerations, on a per-frame

basis. Unfortunately, line detections are usually not reliable

enough, being hampered by faded road markings, cluttering

elements from the nearby traffic or weather conditions, see

e.g., Figure 2 and 3a and 5. On the other hand, consider the

situation depicted in Figure 3a, surely a critical situation for

ego-lane estimation. Even though the exact lane cannot be

estimated from the detected line, a distance measured from

the detected line would allow us to limit the uncertainty

only to the compatible lanes, as depicted in Figure 3b.

Our proposal is to tackle the ego-lane estimation with

a probabilistic approach, in order to allow the system to

infer the ego-lane by leveraging consecutive, yet incomplete,

observations over time. We propose an HMM approach with

n-lane states, corresponding to the number of lanes retrieved

from an OpenStreetMap-like service.

A. Simple Line Detector and Tracker

In this section, we shortly describe the basic line detection

and tracking algorithm used in this work. The pipeline

leverages the images from an on-board stereo rig, with

known calibration w.r.t. the vehicle reference frame. The

algorithm consists of the following steps:

• The contours of the road markings are extracted from

the Bird Eye / Inverse Perspective view (BEV / IPV) of

Fig. 4: Considering only the line indicated with the arrow,

we can estimate the probability of being in Lane{1|2|3} to

be {0, 0.5, 0.5}. The procedure, repeated for all the detected

lines as well as other detector reliability insights, allows us

to tackle the in-lane localization problem. Here the green

and blue lines visually suggest the reliability of the detected

lines (green means higher).

Box 1: The line tracker output for the image in Figure 4. The

isValid flag is set to TRUE when RI=10, using a hysteresis

counting procedure. A negative offset indicates a line on the

left of the vehicle.

Line1: isValid = 1; continuous=1; RI: 10; offset: -9.15m

Line2: isValid = 0; continuous=0; RI: 09; offset: -6.47m

Line3: isValid = 1; continuous=0; RI: 07; offset: -2.15m

Line4: isValid = 0; continuous=1; RI: 00; offset: +0.99m

the right camera image and discarded if their extension

is below a threshold.

• Considering the detected contours, the algorithm tries

to fit a fixed number of clothoids that include as many

contour areas as possible, exploiting the stereo images

to exclude points not being on the ground plane.

• The parameters of each clothoid model are then updated

by means of a Kalman Filter.

With respect to the last 10 frames, a hysteresis counting

procedure is used to track each line reliability. We refer to

this information as Reliability Index (RI) in the following

sections, and it allows us to set the isValid flag once the

counter reaches its maximum value.

The basic line detector and tracker achieves good perfor-

mances only under optimal illumination conditions and, as

depicted in Figure 4 and shown in the corresponding results

in Box 1, dashed lines and shadows are not always handled

correctly.

However, the algorithm allows us to evaluate our contri-

bution, which is designed to enhance the vehicle ego-lane

estimation by exploiting a noisy sensor as well as the road
lane properties of OpenStreetMap.

B. HMM with Transient Failure Model

To tackle the unavoidable problem of sensor failures, we

applied a filtering algorithm based on the HMM proposal

introduced in [31]. The proposed scheme allows us to take
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Fig. 5: In this figure, two out of five lines are correctly

tracked. The shadow created by the Jersey barrier prevents

the correct detection of the leftmost line. Comparable issues

arise also with dashed lines if the space between two

consecutive detected dashes is increased by the presence of

other vehicles.

advantage of incomplete road line observations in a proba-

bilistic fashion, exploiting the line RI to better estimate the

current ego-lane. The HMM model implements a filtering

procedure over a single discrete random variable, where

each filtering iteration depends on the parameterization in

Equation 1, see below for an explanation of the parameters.

HMM(n, σ1, σ2, P1, P2, BV,w) (1)

The vehicle state space Xt is defined using road lanes

retrieved from the OpenStreetMap service. The belief over

such state space represents the probability of being in

one of the retrieved lanes, considering both the case of

having a properly operating (Ok) or a faulty (Bad) line

detector. These multiple cases are combined into a single

“megavariable” [31], whose values are all the possible tuples

of the individual state variables. The Xt state variable,

see Equation 6, is created using the number n of lanes

retrieved from the OpenStreetMap road that is currently

being driven. Regarding the State Transition Matrix (STM),

we used an approximated Gaussian transition model in which

the appropriate probabilities are generated from the Basic

Transition Matrix (BTM) shown in Table I, which needs to

be extended in order to combine all the four cases of the

“megavariable”. The STM is shown in Equation 7, where

parts A–D correspond respectively to:

A → lane transitions in SensorOK state,

B → lane transitions from SensorOk to SensorBad state,

C → lane transitions from SensorBad to SensorOk state,

D → lane transitions in SensorOk state.

Each part is instantiated using Equations 2–5, where P1

and P2 represent how likely the HMM will stay in each

of the two sensor states (Ok or Bad) and σ1,2 represent

two different values used to generate the probability density

function (PDF). Finally, the combination of the state Xt

multiplied by the STM matrix gives the prediction state Xt.

A = BTM(σ1) · (P1) (2)

B = BTM(σ1) · (1− P1) (3)

C = BTM(σ2) · (1− P2) (4)

D = BTM(σ2) · (P2) (5)

Xt = {Lane1..nSensorOk;Lane1..nSensorBad} (6)

TABLE I: Basic Transition Matrix (BTM)

Lane1 Lane2 · · · Lanen
Lane1 N (1, 1, σ) N (2, 1, σ) · · · N (n, 1, σ)
Lane2 N (1, 2, σ)
· · · · · ·
Lanen N (1, n, σ) N (n, n, σ)

STM2n×2n =

⎛
⎝

An×n Bn×n

Cn×n Dn×n

⎞
⎠ (7)

C. Counting Scheme

To evaluate the line tracker measurements, we derived an

ad-hoc sensor model which exploits both the spatial and the

RI information generated by the line tracker. The pipeline is

composed as follows. First, we sort the lines in ascending

order, considering their lateral offset w.r.t. the vehicle. Then a

vector of counters, called tentative, of dimension n is created.

The elements are populated by iterating the following con-

siderations over all the valid lines, taking into consideration

both dashed and continuous lines:

• we add 1 to all the tentative vector positions which are

in accordance with the measurement, i.e., compatible

with the line,

• if the line has the continuous flag enabled, we add an

additional Bonus Value (BV) associated to the tentative
vector position (based on the distance w.r.t. the line).

As an example, considering the line indicated with an arrow

in Figure 4, the resulting tentative vector corresponds to

[0; 1; 1] after the evaluation of the highlighted line. During

the iteration phase, we also accumulate all the line-RI

counters, which allow us to obtain an overall measure of

the current detector reliability that we call SensorOk (and

its opposite SensorBad = 1 − SensorOk), according to

Equation 8. The sensor matrix Z, designed to incorporate the

new detector measure into our belief, consists of two separate

parts called S1 and S2, which characterize the sensor model

depending respectively on SensorOk and SensorBad. In

fact, while a reliable sensor measurement should be quickly

integrated into the state, a failure of the sensor should not

compromise the model estimate. Here the transient failure

model is applied. S1 is then calculated according to the

tentative vector only, while S2 introduces a certain amount

of inertia, parameterized by the parameter w.

SensorOk =

∑n
1 isV alidi ·RIi

10 · n (8)

SensorBadState = tentative · w +Xt · (1− w) (9)

S1 → SensorOk · tentative
S2 → SensorBad · Sensor Bad State

Finally, the sensor matrix Z consists in a 2n matrix com-

posed as follows:

Z =
(
S1 S2

)
(10)
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Fig. 6: The figure depicts the overall pipeline involved in the

estimation of the vehicle’s current lane. The blocks inside the

dashed box represent actions of the proposed model.

The new lane positioning estimates are calculated combining

the aforementioned prediction Xt multiplied by the Z matrix

described so far into the new state vector Xt+1. Finally, to

identify the ego-lane, we select the highest value from the

Xt+1 vector. The overall algorithm is depicted in Figure 6.

IV. EXPERIMENTAL CONFIGURATION

To effectively verify the improvements offered by our

model, we collected two datasets in real driving conditions.

The first dataset was recorded in the A4 highway, Italy,

from Bergamo to Milan. The second dataset is from the A-2

highway area of Alcalá de Henares, Spain. Both the datasets

were recorded at 10 fps and have a resolution of 1312x540

and 1392x400 pixels respectively. Differently from standard

datasets like KITTI, in which the highway sequences only

contain few lanes, we drove our vehicles on wider highways

with 3 and 4 lanes (Spain and Italy respectively), including

more than 100 lane changes in the A4 highway sequences.

We manually created a ground truth (GT) by annotating the

correct lane number on more than 20K frames, considering

as Lane1 the leftmost lane as in Figure 3. For each frame,

we also included a flag that indicates whether the vehicle is

actively crossing a lane, i.e., moving to an adjacent lane (see

Figure 1). For Equation 1, the parameter values used during

the experimental section performed in Italy are as follows:

n = 4, σ1 = σ2 = 0.72, P1 = 0.9, P2 = 0.2, BV = 2,

w = 0.6. This parameterization was empirically defined after

an initial optimization phase, aimed at identifying the best

parameter configuration with respect to the GT. Believing

that further research is required in the context, and to allow

future researchers to compare their work with respect to

ours, we published our datasets and the associated GT values

TABLE II: Ego-Lane Detection Dispersion

Detectory Only Our Model
Correct Lane 5276 6978

Offset 1 3744 2762
Offset 2 779 212
Offset 3 153 0

The table refers to the A4 Dataset, Seq #1, and reports the number of frames
in which the lane algorithms correctly identified the vehicle lane position
(first row). The three remaining rows show how the algorithms spread the
misclassifications over the adjacent lanes. The Brief score associated to the
detector is 0.293 while our model achieves 0.198. As the reader may notice,
the metrics shows the better performances of our approach.

TABLE III: Line Detector Only

1 2 3 4 Support Recall
GT Lane 1 2230 320 21 3 2574 0.866
GT Lane 2 904 2005 275 16 3200 0.627
GT Lane 3 373 1666 927 5 2971 0.312
GT Lane 4 150 369 574 114 1207 0.094
Total 3657 4360 1797 138
Precision 0.61 0.46 0.516 0.826
F1 Score 0.7158 0.53 0.389 0.17

Confusion Matrix, A4 Highway, using the line detector only.

online1.

V. RESULTS

We evaluated the performances measuring the ego-lane

estimates of the both algorithms (i.e., the detector and the

proposed model) in a per-frame basis, reporting whether

correct lane classifications were achieved.

Figure 7 shows a short area of the A4 highway together

with qualitative results of the algorithm performances, while

in Table II we report the dispersion over the ego-lane

detection, taking into account the full sequence length. As

1The dataset and the annotations are available on our lab’s web-
site: http://www.ira.disco.unimib.it/ego-lane-estimation-by-modeling-lanes-
and-sensor-failures

TABLE IV: Line Detector + Our Model

1 2 3 4 Support Recall
GT Lane 1 2080 432 62 0 2574 0.808
GT Lane 2 246 2477 476 1 3200 0.774
GT Lane 3 13 871 2082 5 2971 0.701
GT Lane 4 0 136 732 339 1207 0.281
Total 2339 3916 3352 345
Precision 0.889 0.633 0.621 0.983
F1 Score 0.847 0.696 0.659 0.437

Confusion Matrix, A4 Highway, using the proposed model.

TABLE V: Line Detector Only

1 2 3 4 Support Recall
GT Lane 1 2091 69 21 3 2574 0.957
GT Lane 2 704 1630 101 16 3200 0.665
GT Lane 3 280 1264 704 4 2971 0.313
GT Lane 4 80 267 424 113 1207 0.128
Total 3155 3230 1250 136
Precision 0.663 0.505 0.563 0.831
F1 Score 0.783 0.574 0.402 0.222

Confusion Matrix, A4 Highway, using the line detector only, on frames not
involving lane transitions.
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Fig. 7: A short section of the 4-lanes A4 highway in Italy. More saturated colors correspond to a higher probability of being

in the specified lane. The figure depicts a comparison between our localization model (top) w.r.t. the results achieved using

the detector only (middle). The bottom part of the graph corresponds to the ground truth, where the grayed part corresponds

to the transition areas between lanes. As it can be seen, the approach yields good improvements with more stable detections

over the detector’s results.

TABLE VI: Line Detector + Our Model

1 2 3 4 Support Recall
GT Lane 1 1913 209 62 0 2574 0.876
GT Lane 2 199 2009 242 1 3200 0.82
GT Lane 3 0 491 1757 4 2971 0.78
GT Lane 4 0 113 470 301 1207 0.34
Total 2112 2822 2531 306
Precision 0.906 0.712 0.694 0.984
F1 Score 0.891 0.762 0.735 0.506

Confusion Matrix, A4 Highway, using the proposed model, on frames not
involving lane transitions.

TABLE VII: Line Detector Only - Spain dataset

1 2 3 Support Recall
GT Lane 1 2051 353 74 2478 0.828
GT Lane 2 550 3701 317 4568 0.81
GT Lane 3 93 1383 1230 2706 0.455
Total 2694 5437 1621
Precision 0.761 0.681 0.759
F1 Score 0.793 0.74 0.569

Confusion Matrix, Spain dataset, using the line detector only.

TABLE VIII: Line Detector + Our Model - Spain dataset

1 2 3 Support Recall
GT Lane 1 2255 223 0 2478 0.91
GT Lane 2 345 3873 350 4568 0.848
GT Lane 3 43 306 2357 2706 0.871
Total 2643 4402 2707
Precision 0.853 0.88 0.871
F1 Score 0.881 0.864 0.871

Confusion Matrix, Spain dataset, using the proposed model.

TABLE IX: Line Detector Only - Spain dataset

1 2 3 Support Recall
GT Lane 1 1740 162 52 2478 0.89
GT Lane 2 320 3213 63 4568 0.784
GT Lane 3 48 1225 1022 2706 0.596
Total 2108 4600 1137
Precision 0.825 0.698 0.899
F1 Score 0.857 0.784 0.596

Confusion Matrix, Spain dataset, using the line detector only, on frames not
involving lane transitions.

TABLE X: Line Detector + Our Model - Spain dataset

1 2 3 Support Recall
GT Lane 1 1860 94 0 2478 0.952
GT Lane 2 200 3323 73 4568 0.924
GT Lane 3 0 254 2041 2706 0.889
Total 2060 3671 2114
Precision 0.903 0.905 0.965
F1 Score 0.927 0.915 0.926

Confusion Matrix, Spain dataset, using the proposed model, on frames not
involving lane transitions.

readers may observe, here our naive line detector shows its

limitations. On the one hand, and not surprisingly, the results

show that the line detector alone is unable to correctly detect

the correct ego-lane, mostly because of missing detections

due to clutter or illumination issues. As depicted in the

middle part of Figure 7 (i.e., detector only segment), the

detector results are extremely noisy, resulting in unreliable

ego-lane detections. For instance, the detector is completely

missing the final transition from Lane1 to Lane2, leaving

the vehicle without almost any in-lane localization clue. On

the other hand, the filtering effect of the HMM model is

clearly shown in the upper part of the same image. Here the

proposed model correctly identified the lane transitions even

without a complete set of line measurements, and promis-

ing results are summarized in Figure 8. From a technical

perspective, our model outperformed the basic detector in

all our tests. In the confusion matrices Tables III to X, we

report the most relevant information we used to assess our

algorithm performances. It is worth noting that, regarding the

dataset recorded in Spain, both the algorithms achieve better

performances. This is most likely related to the better view

of the whole road in front of the vehicle, which contains 3

lanes instead of 4. Finally, with respect to the experimental

activity and the results, it is clear that with a slightly better

line detector would result in a great improvement.

CONCLUSIONS AND FUTURE WORKS

We presented an ego-lane estimation algorithm aimed

at enhancing the accuracy of the vehicle localization in

highway scenarios. Differently from other works, we have

also proposed a reusable optimization designed to cooperate
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(a) (b) (c) (d)

Fig. 8: Comparison graphs between the localization accura-

cies using our proposal w.r.t. using the detector only, in both

Italy (4-lanes highway, Figures 8a and 8b) and Spain (3-lanes

highway, Figures 8c and 8d). In all figures, green represents

correct detections and blue wrong detections.

with existing line detectors. With respect to the existing

ego-lane estimation literature, our algorithm achieves good

localization even when fed with noisy and/or occasionally

missing data, i.e., the typical output of a real and therefore

faulty line detector. We exploited an HMM-based scheme to

take advantage of real road line observations in a probabilis-

tic fashion. The proposed algorithm allows us to improve

the localization robustness in treacherous conditions, where

lane markings are missing or are hidden by traffic clutter

and/or lightening issues. As part of our future works, we

are currently working on introducing a seamless transition

system between different lane configuration scenarios, by

leveraging our previous contributions in the context of vehi-

cle localization. This integration would allow us to tackle

the possibility of errors due to GNSS to OpenStreetMap

mismatches, as well as incorrect map information. Finally,

we are currently analyzing the results and limitations of the

proposed algorithm in urban-like scenarios.
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