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Abstract— Stereo-based object detection systems can be
greatly enhanced thanks to the use of passive UHF RFID
technology. By combining tag localization with its identification
capability, new features can be associated with each detected
object, extending the set of potential applications. The main
problem consists in the association between RFID tags and
objects due to the intrinsic limitations of RSSI-based local-
ization approaches. In this paper, a new directional RSSI-
distance model is proposed taking into account the angle
between the object and the antenna. The parameters of the
model are automatically obtained by means of a stereo-RSSI
automatic calibration process. A robust data association method
is presented to deal with complex outdoor scenarios in medium
sized areas with a measurement range up to 15m. The proposed
approach is validated in crosswalks with pedestrians wearing
portable RFID passive tags.

Index Terms— RFID-stereo data association, RSSI-distance
calibration, stereo-based pedestrian detection, directional RSSI-
distance model.

I. INTRODUCTION

The use of Radio Frequency Identification (RFID) is emerg-

ing as one of most fundamental technologies due to its

localization and identification capabilities. It has achieved

a widespread success in various applications ranging from

asset tracking, highway toll collection, supply chain manage-

ment, animal identification, surveillance systems, aerospace,

etc. [1], [2]. More specifically, passive Ultra High Frequency

(UHF) technology has attracted a great attention from both

industry and academia due to the fact that a built-in power

source in the tag is not needed. The passive tag can commu-

nicate with the reader thanks to the use of backscattered cou-

pling from the tag to the reader. In addition, by modeling the

Received Signal Strength Indicator (RSSI) a rough estimation

of the relative position between the tag and the antenna

can be obtained. When more than one (non-isotropic) or

more than two (isotropic) antennas are available, different

multilateration techniques can be applied to compute the

global position of the tagged objects (RFID localization).

However, the accurate and robust estimation of the physical

location of tagged objects is still a challenging task due to the

intrinsic limitations and directional dependence when using

RSSI as a distance metric [3], [4]. When other sensors are

available, different fusion schemes can be used to improve

localization [5], [6]. However, if the accuracy of the range

measurements given by such other sensors (for example,

vision- or laser-based systems) is much better than the one
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Fig. 1. Pedestrian crossing scenario. Only one (a maximum or two)
pedestrians are tagged. The system needs to associate the detected tag with
the corresponding pedestrian.

provided by RFID systems, then RFID localization is only

used to solve the data association problem, linking tags with

objects, and considering the physical location of the tagged

object as the one given by the other sensors [7], [8].

In this paper, a new directional RSSI-distance model is

proposed to improve the accuracy and stability of the dis-

tance measurements given by a passive UHF RFID system.

All the model parameters are automatically obtained by

applying an automatic stereo-RSSI calibration process. A

robust data association method based on a global nearest

neighbor and a new distance metric is presented to deal with

complex outdoor scenarios in medium sized areas with a

measurement range up to 15m. To validate the proposed

approach an intelligent pedestrian crossing application is

used as an example (see Fig. 1). A stereo-based pedestrian

detection system [9] provides accurate localization of pedes-

trians that may carry passive and portable RFID tags. The

most typical scenario involves several pedestrians crossing,

but only one or two carrying a tag. The infrastructure has

to estimate the tagged pedestrian among all the tracked

pedestrians to efficiently provide an adaptive response to

users with disabilities [8].

II. RELATED WORK

Object localization based on radio frequency identification

technology has been widely proposed to address a consider-

able number of different applications [6], including different

technologies such as RFID, Ultra-Wide Band (UWB), Blue-

tooth, BLE, ZigBee, WiFi, etc. [5], and different RSSI-based

2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC)
Windsor Oceanico Hotel, Rio de Janeiro, Brazil, November 1-4, 2016

978-1-5090-1889-5/16/$31.00 ©2016 IEEE 2527

Authorized licensed use limited to: Univ de Alcala. Downloaded on March 22,2021 at 17:34:32 UTC from IEEE Xplore.  Restrictions apply. 



localization approaches such as multilateration, Bayesian in-

ference, nearest-neighbor and proximity [6]. A considerable

number of works have been proposed for the localization of

radio-frequency tags (objects) with fixed nodes (antennas),

as well as the localization of moving nodes using a fixed set

of tags [5]. However, for the course of this work, we focus

on the localization of moving passive tags using fixed or

moving nodes in combination with vision-based approaches.

In most cases, the combination of wireless sensors and

vision-based localization techniques is used to increase the

global localization accuracy by means of some Bayesian

filter (Kalman Filter -KF-, Extended KF -EKF-, Particle

Filter -PF-, Unscented Kalman Filter -UKF-, etc.), that fuses

the range measurements coming from the different sensors.

Thus, in [10], eight directive RFID antennas, and one camera

are embedded on a mobile robot to detect passive tags worn

on the user’s clothes, in indoor environments with a range

of 5m. Saliency maps are obtained for each antenna by

counting occurrence frequencies, and translated to the image

domain. These maps are used to filter particles on a PF

applied over a skin probability image. In [11], RFID-based

localization in a small indoor area of interest with a limited

number of objects is carried out via RSSI measurements and

combined with a camera-based localization by means of an

UKF. There is an obvious improvement in the RFID-based

localization accuracy thanks to the use of the monocular

vision system. The formula between RSSI measurements and

distance is adjusted using a manual calibration process. No

data association is performed since results are provided only

with one object that is directly associated with the detected

tag. A similar fusion scheme using a Particle Filter (PF)

to combine RSSI data from passive RFID tags with stereo

measurements is proposed in [12]. Four different antennas

are used to cover an indoor region of 4× 4 meters. RSSI-

distance calibration procedure involves manual distance com-

putation, and a linear-regression model is used to obtain

distance from RSSI measurements. Multilateration is used to

perform RSSI-based localization. Again, no data association

is applied since only one object is taken into account. PF is

also applied in [13] to fuse WiFi and vision measurements in

outdoor scenarios. The so-called fingerprints (SSID and RSSI

of different nodes) and a GPS are used to perform RSSI-

distance calibration. The GPS is only used for calibration,

and its accuracy is limited when no differential corrections

are available. RSSI-based localization is carried out using the

centroid position of all the access points. Data association is

not applied since results are obtained using only one person.

An interesting dynamical RSSI-distance calibration pro-

cess is proposed in [14] using linear local models around the

target, combining RSSI and vision measurements using an

Extended Information Filter (EIF) in indoor environments.

Although the dynamic RSSI model increases localization

accuracy, its use is limited to one-object one-tag scenario. In

real scenarios with multiple targets, perfect data association

will be needed. A room-level accuracy system is proposed

in [15], by means of a RSSI-room calibration process and a

video tracking system able to detect a person entering/leaving

a room. Trilateration is then applied to solve the room-level

localization problem. Results are provided with only one

candidate so no data association process is applied.

As can be observed, and suggested by [16] and [8], data

association problem between objects or blobs and tags has

been somehow neglected in the literature, which limits the

applicability to real scenarios. In [16] a probabilistic frame-

work to combine RFID and monocular vision measurements

for indoor scenarios in a limited range is proposed. A pre-

defined and manual grid is used to perform RSSI-distance

calibration, modeling each grid position with a Gaussian

distribution. RSSI-based localization is solved by means

of a Mixture of Gaussians, where each mode corresponds

to one RFID antenna. A Hidden Markov Model is finally

applied to deal with the data association problem using a

Gaussian distribution as a metric, and finally combining RSSI

and vision measurements to compute the person/tag final

position.

However, as suggested by several studies [3], [4] there are

intrinsic limitations when using RSSI as a distance metric

in terms of accuracy and stability for localization purposes.

Thus, as in [7], we propose to use the RFID system as an

identification tool, and the vision system for localization.

Thus the data fusion problem can be translated into a pure

data association problem. A global nearest neighbor (GNN)

algorithm with a novel distance metric is proposed to link

radio frequency tags with stereo objects (pedestrians). Our

RSSI-distance calibration process is fully automatic. The sys-

tem is devised to be used in outdoor scenarios (crosswalks),

in medium sized areas with a measurement range up to 15m,

which is a clear contribution w.r.t. the state of the art.

III. RSSI-BASED LOCALIZATION

In most RSSI-based localization approaches, the signal

strength received by a sensor from another one is considered

as a monotonically decreasing function of their distance

(standard approach). As described in [4], a simplified form

of the relation between distance and receive power has been

mostly used:

Pr(dBm) = Pr1(dBm)−K.log10(D(m)) (1)

where Pr1 is the received power in dBm at 1m, K is the

loss parameter and D is the distance between the receiver

and the transmitter. The values of Pr1 and K are determined

by minimizing the root mean square error using calibration

data (RSSI and ground-truth distance values). However, the

standard approach does not consider the directional (angular)

dependence of the signal strength between the antenna and

the tags. In order to take into account the radiation pattern

of the wireless antennas, a more sophisticated model is

proposed, including the angle between the antenna and the

user, that is, Pr(dBm)= f (D,θ). Although the signal strength

can be considered as a logarithmically decreasing function

of its distance, that is not the case w.r.t. the angle. After

analyzing the calibration data we concluded that the signal

strength linearly decreases w.r.t. the angle, so we propose to
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Fig. 2. (a) Standard and (b) directional RSSI-distance RFID model and calibration data for both left and right antennas.

use a directional form of the relation between distance and

receive power as follows:

Pr(dBm) = Pr1(dBm)K1.log10(D(m))+K2.θ (2)

where θ is the angle of the relative position between the

tag (stereo-based) and its corresponding antenna.

Thanks to the stereo-based object detection system [9] the

calibration data including thousands of RSSI, distance and

angle measurements can be automatically obtained. Stereo

reconstruction provides 3D points PLC referenced to the left

camera (LC). The relative positions of both the left and the

right antennas (LA; RA) w.r.t. the left camera are approxi-

mated by using an identity rotation matrix and translation

vectors only containing the X component. Thus, points PLA

and PRA can be easily computed and associated with their

corresponding RSSI values. By using a sequence of one per-

son carrying one tag in a fixed position and orientation, and

moving around the stereo region, the stereo-based pedestrian

location system can be applied to get 3D measurements w.r.t.

one reference point. These measurements can be directly

associated with the RSSI values given by the antennas since

data association is not needed at this stage (one person-one

tag). The 3D position of the tag w.r.t. the stereo system is

approximated as the center of the 3D blob assuming a fixed

tag height w.r.t. the road plane.

Thanks to the automatic calibration procedure, non-linear

least squares fitting can be applied over data to obtain

the parameters of the directional model (Pr1,K1,K2). For

this case, we compute the variance as a function of both

the distance and the angle σ
2
D,θ

. These models and their

corresponding parameters are showed in Fig. 2, where the

standard model is also depicted. Now, for a given RSSI

measurement Pri we compute the curve where Eq. 2 intersects

the plane Pr = Pri, which will represent the potential location

of the tag. A Kalman filter is finally used to get steadier

distance estimations for each tag and antenna. A constant

variation model is used. The state vector includes the RSSI

value and its variation, whereas the measurement vector is

defined by the RSSI value. The RSSI variance is computed

during the calibration process.

IV. STEREO-RSSI DATA ASSOCIATION

In the standard approach (non-directional) [8], a single

RSSI value yields a sphere with the antenna position at its

center and radius equal to the RSSI-based distance mea-

surement as possible tag locations. In our case, a fixed and

known tag height is assumed to reduce the 3D sphere to a 2D

circumference. Then the tag position can be determined by

intersecting the circumferences generated by each antenna.

For isotropic antennas with a 360◦ radiation pattern, a

minimum of 3 antennas are needed to compute the tag
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location. However, in our case, directional 180◦ antennas

are used and one of the intersection points can be discarded.

Accordingly, two antennas are enough for providing a unique

solution. A similar reasoning can be used for the directional

case, in which the tag fixed height assumption provides 2D

curves that should intersect at a unique point.

However, as suggested by previous works [3], [4], and

supported by our data, the intrinsic limitations when using

RSSI as a distance metric in terms of accuracy and stability,

as well as, in our case, the suboptimal position of both

antennas (at the same baseline) causes that the intersection

point or area (including the uncertainties) is not a robust and

accurate metric to be used for solving the data association

problem. Accordingly, a new distance metric that models the

probability of association between a 3D object (stereo-based)

and a detected tag (RSSI-based) is proposed.

The distance d
i j

k between a 3D object i and the tag j

(assuming fixed height) detected by antenna k (k = LA for

left antenna and k = RA for right antenna) is modeled using

a univariate normal distribution where the mean value is the

RSSI-based computed distance d
j

k , the variance is the one

computed after RSSI-distance calibration σ
2

d
j
k

(standard) or

σ
2

d
j
k
,θ

(directional) and the independent variable is the 3D

object position w.r.t. the antenna di
stereo,k:

d
i j

k =
1

σ
d

j
k
,θ

√
2π

e

−
(di

stereo,k
−d

j
k
)2

2σ2

d
j
k
,θ (3)

Note that Eq. (3) can be valid for both the standard and the

directional approach, assuming that θ = 0 for the standard

model. The graphical representation of this metric is depicted

in Fig. 3 for the standard approach. For the directional

case, the curves resulting from the intersection between the

directional model and the RSSI plane will be used instead

of circumferences.

Eq. (3) is computed for both antennas. If one of them does

not receive signal, the metric would be set to zero. In order to

compute the global metric di j that represents the probability

that tag j is being worn by person i, the following equation

would be applied:

di j = d
i j
LA.d

i j
RA (4)

This approach can be easily extended to N antennas by

applying the following equation:

di j =
N

∏
k=1

d
i j

k (5)

To achieve a reliable data association, a global nearest-

neighbor (GNN) [17] algorithm is applied. The association

probability between the predicted position of all pedestrians

(i = 1 . . .P) and all the detected tags ( j = 1 . . .T B) are com-

puted at each time iteration t. The corresponding probability

matrix C is defined using the computed distances di j. The

Hungarian or Munkres algorithm is then applied so that the

Fig. 3. Graphical representation of the new metric defined between a 3D
object and the tag detected by both antennas.

global association probability is maximized, as long as the

final assignment is always greater than 0.5 (higher thresholds

can not be used due to the unstable RSSI measurements).

In order to avoid oscillations between the associations, a

variable ci j is used for each 3D object i accounting the

number of times it has been associated with tag j. The final

association at time t is given by the 3D object i that holds

the maximum number of associations. When this counter

achieves a maximum threshold, the association is fixed until

the tag or the 3D object leaves the detection area.

V. EXPERIMENTAL RESULTS

The experimental setup is is depicted in Fig. 4-left. On

the one hand, the stereo platform is composed of two CMOS

USB cameras with VGA resolution and a baseline of 30cm,

with automatic gain control, with two optics with a focal

length of 2.8mm (wide angle). A specific synchronization

HW controls both the external trigger and the shutter between

the cameras. On the other hand, an UHF Class 1 Gen 2

RFID Speedway Revolution R220 reader with two inputs

is connected to the Ethernet card of the PC. Two far field

circularly polarized panel antennas within the 865-870MHz

band (Europe frequency allocation) are connected to the

reader. Due to our range needs in outdoor scenarios, and

after some experimental work testing different passive tags

(see Fig. 4-right) the Onmi-ID Dura 3000 RFID passive tag

was selected, which have a theoretical read range up to 20m.

The stereo-based object detection system developed by

our group, has been previously validated in different types

of scenarios [8] (daytime and nighttime), with an average

Detection Rate (DR) of 99% at a False Positive Rate (FPR)

of 1.5%. In addition, the 90% of the objects detected by the

system were tracked in less than 10 frames after they were

fully visible (0.33 seconds).

In order to validate the proposed methodology, different

types of sequences have been recorded in a crosswalk

scenario, including different number of people, tags and

trajectories. Some users were required to carry one tag at a

fixed height and pointing to the antennas. Other users were
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Fig. 4. Left: sensor setup, including two CMOS USB cameras and two
far field circularly polarized panel antennas within the 865-870MHz band
(Europe frequency allocation) located at the same baseline. Right: different
passive RFID tags used in our experiments.

only required to cross the road as usual. In order to validate

the proposed methodology, the following metrics are used:

percentage of time that the tag is correctly associated (CA,

Correct Association) and percentage of time a tag has not

been associated (NA, Not Associated). Due to the nature of

our problem, a tag associated to a wrong pedestrian for cases

in which the pedestrian is really close to the tagged one can

be considered as correct associations. Accordingly, we also

compute the percentage of time the tag is correctly associated

or associated to a near pedestrian walking or waiting in

parallel (CNA, Correct-Near Association). In addition, we

have measured the average association delay (D, Delay), that

is, the average number of frames that the system needs for

correctly associating each detected tag with its corresponding

3D object. Note that the system is currently running at 25Hz,

so we can easily convert D to time in seconds.

We provide results corresponding to the standard approach

and the directional one in Table I. As can be observed the

directional approach outperforms the results given by the

standard one in most cases. Thus, CA increases a 6,9%

for sequences in which one tagged and one non-tagged

pedestrian cross in parallel, a 8,4% for cases where two

tagged pedestrians cross in opposite directions, a 5,5,% for

sequences where two tagged pedestrians cross in parallel,

and a 5,7% in cases where there is one tagged pedestrian

among five non-tagged ones in mixed conditions. In addition,

the average delay considerably decreases for those cases.

The increase on CA metric is mainly due to the superior

performance of the directional model when associating the

RFID tag between close pedestrians crossing in parallel.

However, the better lateral discrimination capacity of the

directional model does not involve a considerable increase

in CNA metric, which on average is only 0,4% better for the

directional model than for the standard approach.

Considering all the sequences, average metrics are:

CAStd = 74,8%, CADir = 78,0%, CNAStd = 81,1%,

CNADir = 81,5%, NAStd = 14,7%, NADir = 12,9%,

DStd = 48,7 frames, DDir = 43,7 frames. Accordingly the

overall increase of the directional model in CA and CNA

metrics is 3,2% and 0,1% respectively. In addition, the

overall decrease in NA and D metrics is 1,8% and 5 frames

respectively.

Different examples are depicted for both the standard and

the directional approach in Figs. 5(a) and 5(b) respectively.

The upper row shows the images of the left camera with a

color-coded square that represents the associated tag nearby

to the detected pedestrian. The lower row depicts the XZ-

map (bird’s eye view) without road points, including the

detected blobs and the corresponding RSSI circumferences

or curves for each antena depending on the model (standard

or directional). Each RFID tag is labeled with a different

color (green or blue). As can be observed, in most cases

the RSSI curves of the directional model are closer to the

tagged pedestrian than the RSSI circumferences of the stan-

dard approach. In the third example the standard approach

incorrectly associates each tag for two tagged-pedestrians

crossing and in the fourth example the model is not able

to correctly associate one of the tags to its corresponding

pedestrian.

VI. CONCLUSIONS

In this paper we have presented a novel directional RSSI-

distance model to enhance the localization performance

of standard methods that do not take into account the

angle between the passive tag and the antennas. All the

parameters of the directional passive UHF RFID model are

obtained by using a stereo-based object detection system

that allows the implementation of a fully automatic RSSI-

distance calibration process. Then, a robust data association

procedure is presented. A new probabilistic metric is used

along with a global nearest neighbor (GNN) algorithm to

associate each detected tag with its corresponding object,

in outdoor scenarios with a measurement range up to 15m,

where the number of non-tagged object is usually larger

than the number of tagged ones. Specifically, to validate

the proposed approach, an intelligent pedestrian crossing

application is presented. Results showed that the directional

model enhances the lateral discrimination capability of the

system and reduces the association delay.

Future works will involve exploring other active but low

cost radio frequency identification technologies such as Blue-

tooth Low Energy (BLE) to enhance the association between

tags and objects, increasing the range and improving the

stability of the RSSI. In addition, other application scenarios

will be explored including indoor environments.
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